Cargando…
Mouse Stromal Cells Confound Proteomic Characterization and Quantification of Xenograft Models
Xenografts are essential models for studying cancer biology and developing oncology drugs, and are more informative with omics data. Most reported xenograft proteomics projects directly profiled tumors comprising human cancer cells and mouse stromal cells, followed by computational algorithms for as...
Autores principales: | Shi, Zhaomei, Mao, Binchen, Chen, Xiaobo, Hao, Piliang, Guo, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035517/ https://www.ncbi.nlm.nih.gov/pubmed/36968139 http://dx.doi.org/10.1158/2767-9764.CRC-22-0431 |
Ejemplares similares
-
Statistical Assessment of Drug Synergy from In Vivo Combination Studies Using Mouse Tumor Models
por: Mao, Binchen, et al.
Publicado: (2023) -
Quantitative Phosphoproteomics Reveals System-Wide Phosphorylation Network Altered by Spry in Mouse Mammary Stromal Fibroblasts
por: Shi, Tiezhu, et al.
Publicado: (2019) -
Statistical quantification of confounding bias in machine learning models
por: Spisak, Tamas
Publicado: (2022) -
The design, analysis and application of mouse clinical trials in oncology drug development
por: Guo, Sheng, et al.
Publicado: (2019) -
Simultaneous Analysis of Proteome, Phospho- and Glycoproteome of Rat Kidney Tissue with Electrostatic Repulsion Hydrophilic Interaction Chromatography
por: Hao, Piliang, et al.
Publicado: (2011)