Cargando…

Hierarchical strategy for sEMG classification of the hand/wrist gestures and forces of transradial amputees

INTRODUCTION: The myoelectric control strategy, based on surface electromyographic signals, has long been used for controlling a prosthetic system with multiple degrees of freedom. Several methods classify gestures and force levels but the simultaneous real-time control of hand/wrist gestures and fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Leone, Francesca, Mereu, Federico, Gentile, Cosimo, Cordella, Francesca, Gruppioni, Emanuele, Zollo, Loredana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035594/
https://www.ncbi.nlm.nih.gov/pubmed/36968301
http://dx.doi.org/10.3389/fnbot.2023.1092006
Descripción
Sumario:INTRODUCTION: The myoelectric control strategy, based on surface electromyographic signals, has long been used for controlling a prosthetic system with multiple degrees of freedom. Several methods classify gestures and force levels but the simultaneous real-time control of hand/wrist gestures and force levels did not yet reach a satisfactory level of effectiveness. METHODS: In this work, the hierarchical classification approach, already validated on 31 healthy subjects, was adapted for the real-time control of a multi-DoFs prosthetic system on 15 trans-radial amputees. The effectiveness of the hierarchical classification approach was assessed by evaluating both offline and real-time performance using three algorithms: Logistic Regression (LR), Non-linear Logistic Regression (NLR), and Linear Discriminant Analysis (LDA). RESULTS: The results of this study showed the offline performance of amputees was promising and comparable to healthy subjects, with mean F1 scores of over 90% for the “Hand/wrist gestures classifier” and 95% for the force classifiers, implemented with the three algorithms with features extraction (FE). Another significant finding of this study was the feasibility of using the hierarchical classification strategy for real-time applications, due to its ability to provide a response time of 100 ms while maintaining an average online accuracy of above 90%. DISCUSSION: A possible solution for real-time control of both hand/wrist gestures and force levels is the combined use of the LR algorithm with FE for the "Hand/wrist gestures classifier", and the NLR with FE for the Spherical and Tip force classifiers.