Cargando…
Decoding fMRI alcohol cue reactivity and its association with drinking behaviour
BACKGROUND: Cue reactivity, the enhanced sensitivity to conditioned cues, is associated with habitual and compulsive alcohol consumption. However, most previous studies in alcohol use disorder (AUD) compared brain activity between alcohol and neutral conditions, solely as cue-triggered neural reacti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035780/ https://www.ncbi.nlm.nih.gov/pubmed/36822819 http://dx.doi.org/10.1136/bmjment-2022-300639 |
_version_ | 1784911488999227392 |
---|---|
author | Tan, Haoye Gerchen, Martin Fungisai Bach, Patrick Lee, Alycia M Hummel, Oliver Sommer, Wolfgang Kirsch, Peter Kiefer, Falk Vollstädt-Klein, Sabine |
author_facet | Tan, Haoye Gerchen, Martin Fungisai Bach, Patrick Lee, Alycia M Hummel, Oliver Sommer, Wolfgang Kirsch, Peter Kiefer, Falk Vollstädt-Klein, Sabine |
author_sort | Tan, Haoye |
collection | PubMed |
description | BACKGROUND: Cue reactivity, the enhanced sensitivity to conditioned cues, is associated with habitual and compulsive alcohol consumption. However, most previous studies in alcohol use disorder (AUD) compared brain activity between alcohol and neutral conditions, solely as cue-triggered neural reactivity. OBJECTIVE: This study aims to find the neural subprocesses during the processing of visual alcohol cues in AUD individuals, and how these neural patterns are predictive for relapse. METHODS: Using cue reactivity and rating tasks, we separately modelled the patterns decoding the processes of visual object recognition and reward appraisal of alcohol cues with representational similarity analysis, and compared the decoding involvements (ie, distance between neural responses and hypothesised decoding models) between AUD and healthy individuals. We further explored connectivity between the identified neural systems and the whole brain and predicted relapse within 6 months using decoding involvements of the neural patterns. FINDINGS: AUD individuals, compared with healthy individuals, showed higher involvement of motor-related brain regions in decoding visual features, and their reward, habit and executive networks were more engaged in appraising reward values. Connectivity analyses showed the involved neural systems were widely connected with higher cognitive networks during alcohol cue processing in AUD individuals, and decoding involvements of frontal eye fields and dorsolateral prefrontal cortex could contribute to relapse prediction. CONCLUSIONS: These findings provide insight into how AUD individuals differently decode alcohol cues compared with healthy participants, from the componential processes of visual object recognition and reward appraisal. CLINICAL IMPLICATIONS: The identified patterns are suggested as biomarkers and potential therapeutic targets in AUD. |
format | Online Article Text |
id | pubmed-10035780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-100357802023-08-21 Decoding fMRI alcohol cue reactivity and its association with drinking behaviour Tan, Haoye Gerchen, Martin Fungisai Bach, Patrick Lee, Alycia M Hummel, Oliver Sommer, Wolfgang Kirsch, Peter Kiefer, Falk Vollstädt-Klein, Sabine BMJ Ment Health Imaging Studies BACKGROUND: Cue reactivity, the enhanced sensitivity to conditioned cues, is associated with habitual and compulsive alcohol consumption. However, most previous studies in alcohol use disorder (AUD) compared brain activity between alcohol and neutral conditions, solely as cue-triggered neural reactivity. OBJECTIVE: This study aims to find the neural subprocesses during the processing of visual alcohol cues in AUD individuals, and how these neural patterns are predictive for relapse. METHODS: Using cue reactivity and rating tasks, we separately modelled the patterns decoding the processes of visual object recognition and reward appraisal of alcohol cues with representational similarity analysis, and compared the decoding involvements (ie, distance between neural responses and hypothesised decoding models) between AUD and healthy individuals. We further explored connectivity between the identified neural systems and the whole brain and predicted relapse within 6 months using decoding involvements of the neural patterns. FINDINGS: AUD individuals, compared with healthy individuals, showed higher involvement of motor-related brain regions in decoding visual features, and their reward, habit and executive networks were more engaged in appraising reward values. Connectivity analyses showed the involved neural systems were widely connected with higher cognitive networks during alcohol cue processing in AUD individuals, and decoding involvements of frontal eye fields and dorsolateral prefrontal cortex could contribute to relapse prediction. CONCLUSIONS: These findings provide insight into how AUD individuals differently decode alcohol cues compared with healthy participants, from the componential processes of visual object recognition and reward appraisal. CLINICAL IMPLICATIONS: The identified patterns are suggested as biomarkers and potential therapeutic targets in AUD. BMJ Publishing Group 2023-02-23 /pmc/articles/PMC10035780/ /pubmed/36822819 http://dx.doi.org/10.1136/bmjment-2022-300639 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Imaging Studies Tan, Haoye Gerchen, Martin Fungisai Bach, Patrick Lee, Alycia M Hummel, Oliver Sommer, Wolfgang Kirsch, Peter Kiefer, Falk Vollstädt-Klein, Sabine Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title | Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title_full | Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title_fullStr | Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title_full_unstemmed | Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title_short | Decoding fMRI alcohol cue reactivity and its association with drinking behaviour |
title_sort | decoding fmri alcohol cue reactivity and its association with drinking behaviour |
topic | Imaging Studies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035780/ https://www.ncbi.nlm.nih.gov/pubmed/36822819 http://dx.doi.org/10.1136/bmjment-2022-300639 |
work_keys_str_mv | AT tanhaoye decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT gerchenmartinfungisai decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT bachpatrick decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT leealyciam decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT hummeloliver decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT sommerwolfgang decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT kirschpeter decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT kieferfalk decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour AT vollstadtkleinsabine decodingfmrialcoholcuereactivityanditsassociationwithdrinkingbehaviour |