Cargando…

Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia

An in-depth analysis of the epidemiological patterns of TB/HIV co-infection is essential since it helps to target high-risk areas with effective control measures. The main objective of this study was to assess the spatial clustering of TB/HIV co-infection prevalence in Ethiopia for the year 2018 usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gemechu, Leta Lencha, Debusho, Legesse Kassa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035872/
https://www.ncbi.nlm.nih.gov/pubmed/36952538
http://dx.doi.org/10.1371/journal.pone.0283334
_version_ 1784911511609671680
author Gemechu, Leta Lencha
Debusho, Legesse Kassa
author_facet Gemechu, Leta Lencha
Debusho, Legesse Kassa
author_sort Gemechu, Leta Lencha
collection PubMed
description An in-depth analysis of the epidemiological patterns of TB/HIV co-infection is essential since it helps to target high-risk areas with effective control measures. The main objective of this study was to assess the spatial clustering of TB/HIV co-infection prevalence in Ethiopia for the year 2018 using district-level aggregated TB and HIV data obtained from the Ethiopian Federal Ministry of Health. The global Moran’s index, Getis-Ord [Image: see text] local statistic, and Bayesian spatial modeling techniques were applied to analyse the data. The result of the study shows that TB among people living with HIV (PLHIV) and HIV among TB patients prevalence were geographically heterogeneous. The highest prevalence of TB among PLHIV in 2018 was reported in the Gambella region (1.44%). The overall prevalence of TB among PLHIV in Ethiopia in the same year was 0.38% while the prevalence of HIV among TB patients was 6.88%. Both district-level prevalences of HIV among TB patients and TB among PLHIV were positively spatially autocorrelated, but the latter was not statistically significant. The local indicators of spatial analysis using the Getis-Ord statistic also identified hot-spots districts for both types of TB/HIV co-infection data. The results of Bayesian spatial logistic regression with spatially structured and unstructured random effects using the Besag, York, and Mollié prior showed that not all the heterogeneities in the prevalence of HIV among TB patients and TB among PLHIV were explained by the spatially structured random effects. This study expanded knowledge about the spatial clustering of TB among PLHIV and HIV among TB patients in Ethiopia at the district level in 2018. The findings provide information to health policymakers in the country to plan geographically targeted and integrated interventions to jointly control TB and HIV.
format Online
Article
Text
id pubmed-10035872
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-100358722023-03-24 Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia Gemechu, Leta Lencha Debusho, Legesse Kassa PLoS One Research Article An in-depth analysis of the epidemiological patterns of TB/HIV co-infection is essential since it helps to target high-risk areas with effective control measures. The main objective of this study was to assess the spatial clustering of TB/HIV co-infection prevalence in Ethiopia for the year 2018 using district-level aggregated TB and HIV data obtained from the Ethiopian Federal Ministry of Health. The global Moran’s index, Getis-Ord [Image: see text] local statistic, and Bayesian spatial modeling techniques were applied to analyse the data. The result of the study shows that TB among people living with HIV (PLHIV) and HIV among TB patients prevalence were geographically heterogeneous. The highest prevalence of TB among PLHIV in 2018 was reported in the Gambella region (1.44%). The overall prevalence of TB among PLHIV in Ethiopia in the same year was 0.38% while the prevalence of HIV among TB patients was 6.88%. Both district-level prevalences of HIV among TB patients and TB among PLHIV were positively spatially autocorrelated, but the latter was not statistically significant. The local indicators of spatial analysis using the Getis-Ord statistic also identified hot-spots districts for both types of TB/HIV co-infection data. The results of Bayesian spatial logistic regression with spatially structured and unstructured random effects using the Besag, York, and Mollié prior showed that not all the heterogeneities in the prevalence of HIV among TB patients and TB among PLHIV were explained by the spatially structured random effects. This study expanded knowledge about the spatial clustering of TB among PLHIV and HIV among TB patients in Ethiopia at the district level in 2018. The findings provide information to health policymakers in the country to plan geographically targeted and integrated interventions to jointly control TB and HIV. Public Library of Science 2023-03-23 /pmc/articles/PMC10035872/ /pubmed/36952538 http://dx.doi.org/10.1371/journal.pone.0283334 Text en © 2023 Gemechu, Debusho https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Gemechu, Leta Lencha
Debusho, Legesse Kassa
Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title_full Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title_fullStr Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title_full_unstemmed Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title_short Bayesian spatial modelling of tuberculosis-HIV co-infection in Ethiopia
title_sort bayesian spatial modelling of tuberculosis-hiv co-infection in ethiopia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035872/
https://www.ncbi.nlm.nih.gov/pubmed/36952538
http://dx.doi.org/10.1371/journal.pone.0283334
work_keys_str_mv AT gemechuletalencha bayesianspatialmodellingoftuberculosishivcoinfectioninethiopia
AT debusholegessekassa bayesianspatialmodellingoftuberculosishivcoinfectioninethiopia