Cargando…
Development of a machine learning model for early prediction of plasma leakage in suspected dengue patients
BACKGROUND: At least a third of dengue patients develop plasma leakage with increased risk of life-threatening complications. Predicting plasma leakage using laboratory parameters obtained in early infection as means of triaging patients for hospital admission is important for resource-limited setti...
Autores principales: | Zargari Marandi, Ramtin, Leung, Preston, Sigera, Chathurani, Murray, Daniel Dawson, Weeratunga, Praveen, Fernando, Deepika, Rodrigo, Chaturaka, Rajapakse, Senaka, MacPherson, Cameron Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035900/ https://www.ncbi.nlm.nih.gov/pubmed/36913411 http://dx.doi.org/10.1371/journal.pntd.0010758 |
Ejemplares similares
-
1162. A data-driven approach to predict plasma leakage using explainable machine learning
por: Marandi, Ramtin Zargari, et al.
Publicado: (2022) -
Plasma leakage in dengue: a systematic review of prospective observational studies
por: Rodrigo, Chaturaka, et al.
Publicado: (2021) -
Direct costs of managing in-ward dengue patients in Sri Lanka: A prospective study
por: Sigera, Chathurani, et al.
Publicado: (2021) -
Carica papaya extract in dengue: a systematic review and meta-analysis
por: Rajapakse, Senaka, et al.
Publicado: (2019) -
Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka
por: Maduranga, Sachith, et al.
Publicado: (2023)