Cargando…
A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster
Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicoti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035901/ https://www.ncbi.nlm.nih.gov/pubmed/36952449 http://dx.doi.org/10.1371/journal.pone.0275795 |
_version_ | 1784911519396397056 |
---|---|
author | Petrović, Milan Meštrović, Ana Andretić Waldowski, Rozi Filošević Vujnović, Ana |
author_facet | Petrović, Milan Meštrović, Ana Andretić Waldowski, Rozi Filošević Vujnović, Ana |
author_sort | Petrović, Milan |
collection | PubMed |
description | Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction. |
format | Online Article Text |
id | pubmed-10035901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-100359012023-03-24 A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster Petrović, Milan Meštrović, Ana Andretić Waldowski, Rozi Filošević Vujnović, Ana PLoS One Research Article Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction. Public Library of Science 2023-03-23 /pmc/articles/PMC10035901/ /pubmed/36952449 http://dx.doi.org/10.1371/journal.pone.0275795 Text en © 2023 Petrović et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Petrović, Milan Meštrović, Ana Andretić Waldowski, Rozi Filošević Vujnović, Ana A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_full | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_fullStr | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_full_unstemmed | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_short | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_sort | network-based analysis detects cocaine-induced changes in social interactions in drosophila melanogaster |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035901/ https://www.ncbi.nlm.nih.gov/pubmed/36952449 http://dx.doi.org/10.1371/journal.pone.0275795 |
work_keys_str_mv | AT petrovicmilan anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT mestrovicana anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT andreticwaldowskirozi anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT filosevicvujnovicana anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT petrovicmilan networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT mestrovicana networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT andreticwaldowskirozi networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT filosevicvujnovicana networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster |