Cargando…
Fake news detection: A survey of graph neural network methods
The emergence of various social networks has generated vast volumes of data. Efficient methods for capturing, distinguishing, and filtering real and fake news are becoming increasingly important, especially after the outbreak of the COVID-19 pandemic. This study conducts a multiaspect and systematic...
Autores principales: | Phan, Huyen Trang, Nguyen, Ngoc Thanh, Hwang, Dosam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036155/ https://www.ncbi.nlm.nih.gov/pubmed/36999094 http://dx.doi.org/10.1016/j.asoc.2023.110235 |
Ejemplares similares
-
Augmentation and heterogeneous graph neural network for AAAI2021-COVID-19 fake news detection
por: Karnyoto, Andrea Stevens, et al.
Publicado: (2022) -
Sentiment Analysis for Fake News Detection by Means of Neural Networks
por: Kula, Sebastian, et al.
Publicado: (2020) -
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
Intra-graph and Inter-graph joint information propagation network with third-order text graph tensor for fake news detection
por: Cui, Benkuan, et al.
Publicado: (2023) -
Fake news detection: a survey of evaluation datasets
por: D’Ulizia, Arianna, et al.
Publicado: (2021)