Cargando…
Transparent machine learning suggests a key driver in the decision to start insulin therapy in individuals with type 2 diabetes
AIMS: The objective of this study is to establish a predictive model using transparent machine learning (ML) to identify any drivers that characterize therapeutic inertia. METHODS: Data in the form of both descriptive and dynamic variables collected from electronic records of 1.5 million patients se...
Autores principales: | Musacchio, Nicoletta, Zilich, Rita, Ponzani, Paola, Guaita, Giacomo, Giorda, Carlo, Heidbreder, Rebeca, Santin, Pierluigi, Di Cianni, Graziano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Publishing Asia Pty Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036260/ https://www.ncbi.nlm.nih.gov/pubmed/36889912 http://dx.doi.org/10.1111/1753-0407.13361 |
Ejemplares similares
-
Determinants of good metabolic control without weight gain in type 2 diabetes management: a machine learning analysis
por: Giorda, Carlo Bruno, et al.
Publicado: (2020) -
Uncovering Predictors of Lipid Goal Attainment in Type 2 Diabetes Outpatients Using Logic Learning Machine: Insights from the AMD Annals and AMD Artificial Intelligence Study Group
por: Masi, Davide, et al.
Publicado: (2023) -
Artificial Intelligence and Big Data in Diabetes Care: A Position Statement of the Italian Association of Medical Diabetologists
por: Musacchio, Nicoletta, et al.
Publicado: (2020) -
Application of a Machine Learning Technology in the Definition of Metabolically Healthy and Unhealthy Status: A Retrospective Study of 2567 Subjects Suffering from Obesity with or without Metabolic Syndrome
por: Masi, Davide, et al.
Publicado: (2022) -
Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations
por: Whitlock, Rebecca E., et al.
Publicado: (2015)