Cargando…
Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036293/ https://www.ncbi.nlm.nih.gov/pubmed/36970046 http://dx.doi.org/10.1093/braincomms/fcad061 |
_version_ | 1784911618797207552 |
---|---|
author | Bocchetta, Martina Todd, Emily G Bouzigues, Arabella Cash, David M Nicholas, Jennifer M Convery, Rhian S Russell, Lucy L Thomas, David L Malone, Ian B Iglesias, Juan Eugenio van Swieten, John C Jiskoot, Lize C Seelaar, Harro Borroni, Barbara Galimberti, Daniela Sanchez-Valle, Raquel Laforce, Robert Moreno, Fermin Synofzik, Matthis Graff, Caroline Masellis, Mario Tartaglia, Maria Carmela Rowe, James B Vandenberghe, Rik Finger, Elizabeth Tagliavini, Fabrizio de Mendonça, Alexandre Santana, Isabel Butler, Chris R Ducharme, Simon Gerhard, Alexander Danek, Adrian Levin, Johannes Otto, Markus Sorbi, Sandro Le Ber, Isabelle Pasquier, Florence Rohrer, Jonathan D |
author_facet | Bocchetta, Martina Todd, Emily G Bouzigues, Arabella Cash, David M Nicholas, Jennifer M Convery, Rhian S Russell, Lucy L Thomas, David L Malone, Ian B Iglesias, Juan Eugenio van Swieten, John C Jiskoot, Lize C Seelaar, Harro Borroni, Barbara Galimberti, Daniela Sanchez-Valle, Raquel Laforce, Robert Moreno, Fermin Synofzik, Matthis Graff, Caroline Masellis, Mario Tartaglia, Maria Carmela Rowe, James B Vandenberghe, Rik Finger, Elizabeth Tagliavini, Fabrizio de Mendonça, Alexandre Santana, Isabel Butler, Chris R Ducharme, Simon Gerhard, Alexander Danek, Adrian Levin, Johannes Otto, Markus Sorbi, Sandro Le Ber, Isabelle Pasquier, Florence Rohrer, Jonathan D |
author_sort | Bocchetta, Martina |
collection | PubMed |
description | Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials. |
format | Online Article Text |
id | pubmed-10036293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-100362932023-03-25 Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort Bocchetta, Martina Todd, Emily G Bouzigues, Arabella Cash, David M Nicholas, Jennifer M Convery, Rhian S Russell, Lucy L Thomas, David L Malone, Ian B Iglesias, Juan Eugenio van Swieten, John C Jiskoot, Lize C Seelaar, Harro Borroni, Barbara Galimberti, Daniela Sanchez-Valle, Raquel Laforce, Robert Moreno, Fermin Synofzik, Matthis Graff, Caroline Masellis, Mario Tartaglia, Maria Carmela Rowe, James B Vandenberghe, Rik Finger, Elizabeth Tagliavini, Fabrizio de Mendonça, Alexandre Santana, Isabel Butler, Chris R Ducharme, Simon Gerhard, Alexander Danek, Adrian Levin, Johannes Otto, Markus Sorbi, Sandro Le Ber, Isabelle Pasquier, Florence Rohrer, Jonathan D Brain Commun Original Article Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials. Oxford University Press 2023-03-10 /pmc/articles/PMC10036293/ /pubmed/36970046 http://dx.doi.org/10.1093/braincomms/fcad061 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Bocchetta, Martina Todd, Emily G Bouzigues, Arabella Cash, David M Nicholas, Jennifer M Convery, Rhian S Russell, Lucy L Thomas, David L Malone, Ian B Iglesias, Juan Eugenio van Swieten, John C Jiskoot, Lize C Seelaar, Harro Borroni, Barbara Galimberti, Daniela Sanchez-Valle, Raquel Laforce, Robert Moreno, Fermin Synofzik, Matthis Graff, Caroline Masellis, Mario Tartaglia, Maria Carmela Rowe, James B Vandenberghe, Rik Finger, Elizabeth Tagliavini, Fabrizio de Mendonça, Alexandre Santana, Isabel Butler, Chris R Ducharme, Simon Gerhard, Alexander Danek, Adrian Levin, Johannes Otto, Markus Sorbi, Sandro Le Ber, Isabelle Pasquier, Florence Rohrer, Jonathan D Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title_full | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title_fullStr | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title_full_unstemmed | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title_short | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
title_sort | structural mri predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the genetic frontotemporal dementia initiative cohort |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036293/ https://www.ncbi.nlm.nih.gov/pubmed/36970046 http://dx.doi.org/10.1093/braincomms/fcad061 |
work_keys_str_mv | AT bocchettamartina structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT toddemilyg structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT bouziguesarabella structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT cashdavidm structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT nicholasjenniferm structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT converyrhians structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT russelllucyl structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT thomasdavidl structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT maloneianb structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT iglesiasjuaneugenio structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT vanswietenjohnc structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT jiskootlizec structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT seelaarharro structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT borronibarbara structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT galimbertidaniela structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT sanchezvalleraquel structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT laforcerobert structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT morenofermin structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT synofzikmatthis structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT graffcaroline structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT masellismario structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT tartagliamariacarmela structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT rowejamesb structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT vandenbergherik structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT fingerelizabeth structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT tagliavinifabrizio structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT demendoncaalexandre structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT santanaisabel structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT butlerchrisr structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT ducharmesimon structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT gerhardalexander structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT danekadrian structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT levinjohannes structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT ottomarkus structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT sorbisandro structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT leberisabelle structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT pasquierflorence structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT rohrerjonathand structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort AT structuralmripredictsclinicalprogressioninpresymptomaticgeneticfrontotemporaldementiafindingsfromthegeneticfrontotemporaldementiainitiativecohort |