Cargando…
Prediction of cardiovascular disease risk based on major contributing features
The risk of cardiovascular disease (CVD) is a serious health threat to human society worldwide. The use of machine learning methods to predict the risk of CVD is of great relevance to identify high-risk patients and take timely interventions. In this study, we propose the XGBH machine learning model...
Autores principales: | Peng, Mengxiao, Hou, Fan, Cheng, Zhixiang, Shen, Tongtong, Liu, Kaixian, Zhao, Cai, Zheng, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036320/ https://www.ncbi.nlm.nih.gov/pubmed/36959459 http://dx.doi.org/10.1038/s41598-023-31870-8 |
Ejemplares similares
-
Current Progress of Studies of Coronary CT for Risk Prediction of Major Adverse Cardiovascular Event (MACE)
por: Zheng, Jianan, et al.
Publicado: (2021) -
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease
por: Zhang, Mengxiao, et al.
Publicado: (2021) -
Automatic Diagnosis of Major Depressive Disorder Using a High- and Low-Frequency Feature Fusion Framework
por: Wang, Junyu, et al.
Publicado: (2023) -
Residual Risk Factors to Predict Major Adverse Cardiovascular Events in Atherosclerotic Cardiovascular Disease Patients with and without Diabetes Mellitus
por: Lin, Fang-Ju, et al.
Publicado: (2017) -
Developing and Validating Risk Scores for Predicting Major Cardiovascular Events Using Population Surveys Linked with Electronic Health Insurance Records
por: Chang, Hsing-Yi, et al.
Publicado: (2022)