Cargando…

Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia

Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lijing, Gu, Shuchen, Chen, Fenfang, Yu, Yi, Cao, Jin, Li, Xinran, Gao, Chun, Chen, Yanzhen, Yuan, Shuchong, Liu, Xia, Qin, Jun, Zhao, Bin, Xu, Pinglong, Liang, Tingbo, Tong, Hongyan, Lin, Xia, Feng, Xin-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036327/
https://www.ncbi.nlm.nih.gov/pubmed/36959211
http://dx.doi.org/10.1038/s41392-023-01327-5
_version_ 1784911627032723456
author Wang, Lijing
Gu, Shuchen
Chen, Fenfang
Yu, Yi
Cao, Jin
Li, Xinran
Gao, Chun
Chen, Yanzhen
Yuan, Shuchong
Liu, Xia
Qin, Jun
Zhao, Bin
Xu, Pinglong
Liang, Tingbo
Tong, Hongyan
Lin, Xia
Feng, Xin-Hua
author_facet Wang, Lijing
Gu, Shuchen
Chen, Fenfang
Yu, Yi
Cao, Jin
Li, Xinran
Gao, Chun
Chen, Yanzhen
Yuan, Shuchong
Liu, Xia
Qin, Jun
Zhao, Bin
Xu, Pinglong
Liang, Tingbo
Tong, Hongyan
Lin, Xia
Feng, Xin-Hua
author_sort Wang, Lijing
collection PubMed
description Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-β signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-β signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-β signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-β-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-β, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-β signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-β signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-β anti-growth responses.
format Online
Article
Text
id pubmed-10036327
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100363272023-03-25 Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia Wang, Lijing Gu, Shuchen Chen, Fenfang Yu, Yi Cao, Jin Li, Xinran Gao, Chun Chen, Yanzhen Yuan, Shuchong Liu, Xia Qin, Jun Zhao, Bin Xu, Pinglong Liang, Tingbo Tong, Hongyan Lin, Xia Feng, Xin-Hua Signal Transduct Target Ther Article Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-β signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-β signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-β signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-β-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-β, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-β signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-β signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-β anti-growth responses. Nature Publishing Group UK 2023-03-24 /pmc/articles/PMC10036327/ /pubmed/36959211 http://dx.doi.org/10.1038/s41392-023-01327-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Lijing
Gu, Shuchen
Chen, Fenfang
Yu, Yi
Cao, Jin
Li, Xinran
Gao, Chun
Chen, Yanzhen
Yuan, Shuchong
Liu, Xia
Qin, Jun
Zhao, Bin
Xu, Pinglong
Liang, Tingbo
Tong, Hongyan
Lin, Xia
Feng, Xin-Hua
Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title_full Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title_fullStr Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title_full_unstemmed Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title_short Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia
title_sort imatinib blocks tyrosine phosphorylation of smad4 and restores tgf-β growth-suppressive signaling in bcr-abl1-positive leukemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036327/
https://www.ncbi.nlm.nih.gov/pubmed/36959211
http://dx.doi.org/10.1038/s41392-023-01327-5
work_keys_str_mv AT wanglijing imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT gushuchen imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT chenfenfang imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT yuyi imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT caojin imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT lixinran imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT gaochun imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT chenyanzhen imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT yuanshuchong imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT liuxia imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT qinjun imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT zhaobin imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT xupinglong imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT liangtingbo imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT tonghongyan imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT linxia imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia
AT fengxinhua imatinibblockstyrosinephosphorylationofsmad4andrestorestgfbgrowthsuppressivesignalinginbcrabl1positiveleukemia