Cargando…

Supply chain logistics with quantum and classical annealing algorithms

Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance which can have many variables and unwieldy objective functions. As a consequence, there is a growing body of literature that tests quantum algorithms on m...

Descripción completa

Detalles Bibliográficos
Autores principales: Weinberg, Sean J., Sanches, Fabio, Ide, Takanori, Kamiya, Kazumitzu, Correll, Randall
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036469/
https://www.ncbi.nlm.nih.gov/pubmed/36959248
http://dx.doi.org/10.1038/s41598-023-31765-8
Descripción
Sumario:Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance which can have many variables and unwieldy objective functions. As a consequence, there is a growing body of literature that tests quantum algorithms on miniaturized versions of problems that arise in an operations research setting. Rather than taking this approach, we investigate a problem of substantial commercial value, multi-truck vehicle routing for supply chain logistics, at the scale used by a corporation in their operations. Such a problem is too complex to be fully embedded on any near-term quantum hardware or simulator; we avoid confronting this challenge by taking a hybrid workflow approach: we iteratively assign routes for trucks by generating a new binary optimization problem instance one truck at a time. Each instance has [Formula: see text] quadratic binary variables, putting it in a range that is feasible for NISQ quantum computing, especially quantum annealing hardware. We test our methods using simulated annealing and the D-Wave Hybrid solver as a place-holder in wait of quantum hardware developments. After feeding the vehicle routes suggested by these runs into a highly realistic classical supply chain simulation, we find excellent performance for the full supply chain. Our work gives a set of techniques that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to large-scale problems of commercial interest.