Cargando…
Complex modeling with detailed temporal predictors does not improve health records-based suicide risk prediction
Suicide risk prediction models can identify individuals for targeted intervention. Discussions of transparency, explainability, and transportability in machine learning presume complex prediction models with many variables outperform simpler models. We compared random forest, artificial neural netwo...
Autores principales: | Shortreed, Susan M., Walker, Rod L., Johnson, Eric, Wellman, Robert, Cruz, Maricela, Ziebell, Rebecca, Coley, R. Yates, Yaseen, Zimri S., Dharmarajan, Sai, Penfold, Robert B., Ahmedani, Brian K., Rossom, Rebecca C., Beck, Arne, Boggs, Jennifer M., Simon, Greg E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036475/ https://www.ncbi.nlm.nih.gov/pubmed/36959268 http://dx.doi.org/10.1038/s41746-023-00772-4 |
Ejemplares similares
-
Assessing and Minimizing Re-identification Risk in Research Data Derived from Health Care Records
por: Simon, Gregory E., et al.
Publicado: (2019) -
Population-based outreach versus care as usual to prevent suicide attempt: study protocol for a randomized controlled trial
por: Simon, Gregory E., et al.
Publicado: (2016) -
Suicide Deaths Before and During the COVID 19 Pandemic
por: Rossom, R., et al.
Publicado: (2023) -
Antidepressant Use by Youth with Minimal or Mild Depression: Evidence from 3 Health Systems
por: Penfold, Robert B., et al.
Publicado: (2017) -
Predicting outcomes of psychotherapy for depression with electronic health record data
por: Coley, R Yates, et al.
Publicado: (2021)