Cargando…
Pan-cancer classification of single cells in the tumour microenvironment
Single-cell RNA sequencing can reveal valuable insights into cellular heterogeneity within tumour microenvironments (TMEs), paving the way for a deep understanding of cellular mechanisms contributing to cancer. However, high heterogeneity among the same cancer types and low transcriptomic variation...
Autores principales: | Nofech-Mozes, Ido, Soave, David, Awadalla, Philip, Abelson, Sagi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036554/ https://www.ncbi.nlm.nih.gov/pubmed/36959212 http://dx.doi.org/10.1038/s41467-023-37353-8 |
Ejemplares similares
-
Integration of intra-sample contextual error modeling for improved detection of somatic mutations from deep sequencing
por: Abelson, Sagi, et al.
Publicado: (2020) -
Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment
por: Akbar, Shazia, et al.
Publicado: (2019) -
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
por: Peikari, Mohammad, et al.
Publicado: (2018) -
Interacting evolutionary pressures drive mutation dynamics and health outcomes in aging blood
por: Skead, Kimberly, et al.
Publicado: (2021) -
Aberrant PRDM9 expression impacts the pan-cancer genomic landscape
por: Houle, Armande Ang, et al.
Publicado: (2018)