Cargando…
Weakly supervised deep learning to predict recurrence in low-grade endometrial cancer from multiplexed immunofluorescence images
Predicting recurrence in low-grade, early-stage endometrial cancer (EC) is both challenging and clinically relevant. We present a weakly-supervised deep learning framework, NaroNet, that can learn, without manual expert annotation, the complex tumor-immune interrelations at three levels: local pheno...
Autores principales: | Jiménez-Sánchez, Daniel, López-Janeiro, Álvaro, Villalba-Esparza, María, Ariz, Mikel, Kadioglu, Ece, Masetto, Ivan, Goubert, Virginie, Lozano, Maria D., Melero, Ignacio, Hardisson, David, Ortiz-de-Solórzano, Carlos, de Andrea, Carlos E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036616/ https://www.ncbi.nlm.nih.gov/pubmed/36959234 http://dx.doi.org/10.1038/s41746-023-00795-x |
Ejemplares similares
-
The association between the tumor immune microenvironments and clinical outcome in low‐grade, early‐stage endometrial cancer patients
por: López‐Janeiro, Álvaro, et al.
Publicado: (2022) -
Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling
por: López-Janeiro, Álvaro, et al.
Publicado: (2021) -
NaroNet: Discovery of tumor microenvironment elements from highly multiplexed images
por: Jiménez-Sánchez, Daniel, et al.
Publicado: (2022) -
Comparison of multiplex, ELISA and immunofluorescence for detecting autoantibodies in JIA patients
por: Fawcett, Paul T, et al.
Publicado: (2012) -
Challenges and Opportunities in the Statistical Analysis of Multiplex Immunofluorescence Data
por: Wilson, Christopher M., et al.
Publicado: (2021)