Cargando…

Novel flexible and conformable composite neutron scintillator based on fully enriched lithium tetraborate

Thermal neutron detection is a key subject for nuclear physics research and also in a wide variety of applications from homeland security to nuclear medicine. In this work, it is proposed a novel flexible and conformable composite thermal neutron scintillator based on a fully enriched Lithium Tetrab...

Descripción completa

Detalles Bibliográficos
Autores principales: Pino, Felix, Delgado, Jessica Carolina, Carturan, Sara Maria, Mantovani, Giorgia, Polo, Matteo, Fabris, Daniela, Maggioni, Gianluigi, Quaranta, Alberto, Moretto, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036633/
https://www.ncbi.nlm.nih.gov/pubmed/36959323
http://dx.doi.org/10.1038/s41598-023-31675-9
Descripción
Sumario:Thermal neutron detection is a key subject for nuclear physics research and also in a wide variety of applications from homeland security to nuclear medicine. In this work, it is proposed a novel flexible and conformable composite thermal neutron scintillator based on a fully enriched Lithium Tetraborate preparation ([Formula: see text] Li[Formula: see text] B[Formula: see text] O[Formula: see text] ) combined with a phosphorescent inorganic scintillator powder (ZnS:Ag), and is then distributed into a polydimethylsiloxane matrix. The proposed scintillator shows a good neutron detection efficiency (max. [Formula: see text] 57% with respect to the commercial EJ-420), an average light output of [Formula: see text] 9000 ph/neutron-capture, a remarkable insensitivity to [Formula: see text] -rays (Gamma Rejection Ratio <10[Formula: see text]), and an extraordinary flexibility, so as to reach extremely small curvature radii, down to 1.5 mm, with no signs of cracking or tearing. Its characteristics make it suitable to be employed in scenarios where non-standard geometries are needed, for example, to optimize the detector performance and/or maximize the detection efficiency. Finally, the response of a hybrid detector made of a plastic scintillator, wrapped with the proposed scintillator, coupled to a silicon photomultiplier array is described, and the excellent discrimination between [Formula: see text] -rays, fast and thermal neutrons resulting from data processing is demonstrated.