Cargando…
Transcriptional and metabolic responses of apple to different potassium environments
Potassium (K) is one of the most important macronutrients for plant development and growth. The influence mechanism of different potassium stresses on the molecular regulation and metabolites of apple remains largely unknown. In this research, physiological, transcriptome, and metabolite analyses we...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036783/ https://www.ncbi.nlm.nih.gov/pubmed/36968411 http://dx.doi.org/10.3389/fpls.2023.1131708 |
_version_ | 1784911733366718464 |
---|---|
author | Sun, Tingting Zhang, Junke Zhang, Qiang Li, Xingliang Li, Minji Yang, Yuzhang Zhou, Jia Wei, Qinping Zhou, Beibei |
author_facet | Sun, Tingting Zhang, Junke Zhang, Qiang Li, Xingliang Li, Minji Yang, Yuzhang Zhou, Jia Wei, Qinping Zhou, Beibei |
author_sort | Sun, Tingting |
collection | PubMed |
description | Potassium (K) is one of the most important macronutrients for plant development and growth. The influence mechanism of different potassium stresses on the molecular regulation and metabolites of apple remains largely unknown. In this research, physiological, transcriptome, and metabolite analyses were compared under different K conditions in apple seedlings. The results showed that K deficiency and excess conditions influenced apple phenotypic characteristics, soil plant analytical development (SPAD) values, and photosynthesis. Hydrogen peroxide (H(2)O(2)) content, peroxidase (POD) activity, catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA) content were regulated by different K stresses. Transcriptome analysis indicated that there were 2,409 and 778 differentially expressed genes (DEGs) in apple leaves and roots under K deficiency conditions in addition to 1,393 and 1,205 DEGs in apple leaves and roots under potassium excess conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction metabolite biosynthetic processes in response to different K conditions. There were 527 and 166 differential metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and 150 DMAs in apple leaves and roots under high-K stress, respectively. Apple plants regulate carbon metabolism and the flavonoid pathway to respond to low-K and high-K stresses. This study provides a basis for understanding the metabolic processes underlying different K responses and provides a foundation to improve the utilization efficiency of K in apples. |
format | Online Article Text |
id | pubmed-10036783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100367832023-03-25 Transcriptional and metabolic responses of apple to different potassium environments Sun, Tingting Zhang, Junke Zhang, Qiang Li, Xingliang Li, Minji Yang, Yuzhang Zhou, Jia Wei, Qinping Zhou, Beibei Front Plant Sci Plant Science Potassium (K) is one of the most important macronutrients for plant development and growth. The influence mechanism of different potassium stresses on the molecular regulation and metabolites of apple remains largely unknown. In this research, physiological, transcriptome, and metabolite analyses were compared under different K conditions in apple seedlings. The results showed that K deficiency and excess conditions influenced apple phenotypic characteristics, soil plant analytical development (SPAD) values, and photosynthesis. Hydrogen peroxide (H(2)O(2)) content, peroxidase (POD) activity, catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA) content were regulated by different K stresses. Transcriptome analysis indicated that there were 2,409 and 778 differentially expressed genes (DEGs) in apple leaves and roots under K deficiency conditions in addition to 1,393 and 1,205 DEGs in apple leaves and roots under potassium excess conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction metabolite biosynthetic processes in response to different K conditions. There were 527 and 166 differential metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and 150 DMAs in apple leaves and roots under high-K stress, respectively. Apple plants regulate carbon metabolism and the flavonoid pathway to respond to low-K and high-K stresses. This study provides a basis for understanding the metabolic processes underlying different K responses and provides a foundation to improve the utilization efficiency of K in apples. Frontiers Media S.A. 2023-03-10 /pmc/articles/PMC10036783/ /pubmed/36968411 http://dx.doi.org/10.3389/fpls.2023.1131708 Text en Copyright © 2023 Sun, Zhang, Zhang, Li, Li, Yang, Zhou, Wei and Zhou https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Sun, Tingting Zhang, Junke Zhang, Qiang Li, Xingliang Li, Minji Yang, Yuzhang Zhou, Jia Wei, Qinping Zhou, Beibei Transcriptional and metabolic responses of apple to different potassium environments |
title | Transcriptional and metabolic responses of apple to different potassium environments |
title_full | Transcriptional and metabolic responses of apple to different potassium environments |
title_fullStr | Transcriptional and metabolic responses of apple to different potassium environments |
title_full_unstemmed | Transcriptional and metabolic responses of apple to different potassium environments |
title_short | Transcriptional and metabolic responses of apple to different potassium environments |
title_sort | transcriptional and metabolic responses of apple to different potassium environments |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036783/ https://www.ncbi.nlm.nih.gov/pubmed/36968411 http://dx.doi.org/10.3389/fpls.2023.1131708 |
work_keys_str_mv | AT suntingting transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT zhangjunke transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT zhangqiang transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT lixingliang transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT liminji transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT yangyuzhang transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT zhoujia transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT weiqinping transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments AT zhoubeibei transcriptionalandmetabolicresponsesofappletodifferentpotassiumenvironments |