Cargando…
Machine learning based multipurpose medical image watermarking
Digital data security has become an exigent area of research due to a huge amount of data availability at present time. Some of the fields like medical imaging and medical data sharing over communication platforms require high security against counterfeit access, manipulation and other processing op...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036986/ https://www.ncbi.nlm.nih.gov/pubmed/37362569 http://dx.doi.org/10.1007/s00521-023-08457-5 |
Sumario: | Digital data security has become an exigent area of research due to a huge amount of data availability at present time. Some of the fields like medical imaging and medical data sharing over communication platforms require high security against counterfeit access, manipulation and other processing operations. It is essential because the changed/manipulated data may lead to erroneous judgment by medical experts and can negatively influence the human’s heath. This work offers a blind and robust medical image watermarking framework using deep neural network to provide effective security solutions for medical images. During watermarking, the region of interest (ROI) data of the original image is preserved by employing the LZW (Lampel-Ziv-Welch) compression algorithm. Subsequently the robust watermark is inserted into the original image using IWT (integer wavelet transform) based embedding approach. Next, the SHA-256 algorithm-based hash keys are generated for ROI and RONI (region of non-interest) regions. The fragile watermark is then prepared by ROI recovery data and the hash keys. Further, the LSB replacement-based insertion mechanism is utilized to embed the fragile watermark into RONI embedding region of robust watermarked image. A deep neural network-based framework is used to perform robust watermark extraction for efficient results with less computational time. Simulation results verify that the scheme has significant imperceptibility, efficient robust watermark extraction, correct authentication and completely reversible nature for ROI recovery. The relative investigation with existing schemes confirms the dominance of the proposed work over already existing work. |
---|