Cargando…
Anatomical evaluation of deep-learning synthetic computed tomography images generated from male pelvis cone-beam computed tomography
BACKGROUND AND PURPOSE: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT number accuracy. However, correct representation of daily anatomy of the CBCT is also im...
Autores principales: | de Hond, Yvonne J.M., Kerckhaert, Camiel E.M., van Eijnatten, Maureen A.J.M., van Haaren, Paul M.A., Hurkmans, Coen W., Tijssen, Rob H.N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037090/ https://www.ncbi.nlm.nih.gov/pubmed/36969503 http://dx.doi.org/10.1016/j.phro.2023.100416 |
Ejemplares similares
-
A cone-beam X-ray computed tomography data collection designed for machine learning
por: Der Sarkissian, Henri, et al.
Publicado: (2019) -
Anatomical Variation of the Maxillary Sinus in Cone Beam Computed Tomography
por: Poleti, Marcelo Lupion, et al.
Publicado: (2014) -
Inter‐observer variability in library plan selection on iterative CBCT and synthetic CT images of cervical cancer patients
por: de Hond, Yvonne J. M., et al.
Publicado: (2023) -
Cone Beam Computed Tomography-Based Anatomical Assessment of the Olfactory Fossa
por: Costa, Andre Luiz Ferreira, et al.
Publicado: (2019) -
Cone beam computed tomography based image guidance and quality assessment of prostate cancer for magnetic resonance imaging-only radiotherapy in the pelvis
por: Edmund, Jens M., et al.
Publicado: (2021)