Cargando…
Fluids and Electrolytes under Confinement in Single-Digit Nanopores
[Image: see text] Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects ob...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037271/ https://www.ncbi.nlm.nih.gov/pubmed/36898130 http://dx.doi.org/10.1021/acs.chemrev.2c00155 |
_version_ | 1784911840806961152 |
---|---|
author | Aluru, Narayana R. Aydin, Fikret Bazant, Martin Z. Blankschtein, Daniel Brozena, Alexandra H. de Souza, J. Pedro Elimelech, Menachem Faucher, Samuel Fourkas, John T. Koman, Volodymyr B. Kuehne, Matthias Kulik, Heather J. Li, Hao-Kun Li, Yuhao Li, Zhongwu Majumdar, Arun Martis, Joel Misra, Rahul Prasanna Noy, Aleksandr Pham, Tuan Anh Qu, Haoran Rayabharam, Archith Reed, Mark A. Ritt, Cody L. Schwegler, Eric Siwy, Zuzanna Strano, Michael S. Wang, YuHuang Yao, Yun-Chiao Zhan, Cheng Zhang, Ze |
author_facet | Aluru, Narayana R. Aydin, Fikret Bazant, Martin Z. Blankschtein, Daniel Brozena, Alexandra H. de Souza, J. Pedro Elimelech, Menachem Faucher, Samuel Fourkas, John T. Koman, Volodymyr B. Kuehne, Matthias Kulik, Heather J. Li, Hao-Kun Li, Yuhao Li, Zhongwu Majumdar, Arun Martis, Joel Misra, Rahul Prasanna Noy, Aleksandr Pham, Tuan Anh Qu, Haoran Rayabharam, Archith Reed, Mark A. Ritt, Cody L. Schwegler, Eric Siwy, Zuzanna Strano, Michael S. Wang, YuHuang Yao, Yun-Chiao Zhan, Cheng Zhang, Ze |
author_sort | Aluru, Narayana R. |
collection | PubMed |
description | [Image: see text] Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water–energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier. |
format | Online Article Text |
id | pubmed-10037271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100372712023-03-25 Fluids and Electrolytes under Confinement in Single-Digit Nanopores Aluru, Narayana R. Aydin, Fikret Bazant, Martin Z. Blankschtein, Daniel Brozena, Alexandra H. de Souza, J. Pedro Elimelech, Menachem Faucher, Samuel Fourkas, John T. Koman, Volodymyr B. Kuehne, Matthias Kulik, Heather J. Li, Hao-Kun Li, Yuhao Li, Zhongwu Majumdar, Arun Martis, Joel Misra, Rahul Prasanna Noy, Aleksandr Pham, Tuan Anh Qu, Haoran Rayabharam, Archith Reed, Mark A. Ritt, Cody L. Schwegler, Eric Siwy, Zuzanna Strano, Michael S. Wang, YuHuang Yao, Yun-Chiao Zhan, Cheng Zhang, Ze Chem Rev [Image: see text] Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water–energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier. American Chemical Society 2023-03-10 /pmc/articles/PMC10037271/ /pubmed/36898130 http://dx.doi.org/10.1021/acs.chemrev.2c00155 Text en © 2023 American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Aluru, Narayana R. Aydin, Fikret Bazant, Martin Z. Blankschtein, Daniel Brozena, Alexandra H. de Souza, J. Pedro Elimelech, Menachem Faucher, Samuel Fourkas, John T. Koman, Volodymyr B. Kuehne, Matthias Kulik, Heather J. Li, Hao-Kun Li, Yuhao Li, Zhongwu Majumdar, Arun Martis, Joel Misra, Rahul Prasanna Noy, Aleksandr Pham, Tuan Anh Qu, Haoran Rayabharam, Archith Reed, Mark A. Ritt, Cody L. Schwegler, Eric Siwy, Zuzanna Strano, Michael S. Wang, YuHuang Yao, Yun-Chiao Zhan, Cheng Zhang, Ze Fluids and Electrolytes under Confinement in Single-Digit Nanopores |
title | Fluids and Electrolytes
under Confinement in Single-Digit
Nanopores |
title_full | Fluids and Electrolytes
under Confinement in Single-Digit
Nanopores |
title_fullStr | Fluids and Electrolytes
under Confinement in Single-Digit
Nanopores |
title_full_unstemmed | Fluids and Electrolytes
under Confinement in Single-Digit
Nanopores |
title_short | Fluids and Electrolytes
under Confinement in Single-Digit
Nanopores |
title_sort | fluids and electrolytes
under confinement in single-digit
nanopores |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037271/ https://www.ncbi.nlm.nih.gov/pubmed/36898130 http://dx.doi.org/10.1021/acs.chemrev.2c00155 |
work_keys_str_mv | AT alurunarayanar fluidsandelectrolytesunderconfinementinsingledigitnanopores AT aydinfikret fluidsandelectrolytesunderconfinementinsingledigitnanopores AT bazantmartinz fluidsandelectrolytesunderconfinementinsingledigitnanopores AT blankschteindaniel fluidsandelectrolytesunderconfinementinsingledigitnanopores AT brozenaalexandrah fluidsandelectrolytesunderconfinementinsingledigitnanopores AT desouzajpedro fluidsandelectrolytesunderconfinementinsingledigitnanopores AT elimelechmenachem fluidsandelectrolytesunderconfinementinsingledigitnanopores AT fauchersamuel fluidsandelectrolytesunderconfinementinsingledigitnanopores AT fourkasjohnt fluidsandelectrolytesunderconfinementinsingledigitnanopores AT komanvolodymyrb fluidsandelectrolytesunderconfinementinsingledigitnanopores AT kuehnematthias fluidsandelectrolytesunderconfinementinsingledigitnanopores AT kulikheatherj fluidsandelectrolytesunderconfinementinsingledigitnanopores AT lihaokun fluidsandelectrolytesunderconfinementinsingledigitnanopores AT liyuhao fluidsandelectrolytesunderconfinementinsingledigitnanopores AT lizhongwu fluidsandelectrolytesunderconfinementinsingledigitnanopores AT majumdararun fluidsandelectrolytesunderconfinementinsingledigitnanopores AT martisjoel fluidsandelectrolytesunderconfinementinsingledigitnanopores AT misrarahulprasanna fluidsandelectrolytesunderconfinementinsingledigitnanopores AT noyaleksandr fluidsandelectrolytesunderconfinementinsingledigitnanopores AT phamtuananh fluidsandelectrolytesunderconfinementinsingledigitnanopores AT quhaoran fluidsandelectrolytesunderconfinementinsingledigitnanopores AT rayabharamarchith fluidsandelectrolytesunderconfinementinsingledigitnanopores AT reedmarka fluidsandelectrolytesunderconfinementinsingledigitnanopores AT rittcodyl fluidsandelectrolytesunderconfinementinsingledigitnanopores AT schweglereric fluidsandelectrolytesunderconfinementinsingledigitnanopores AT siwyzuzanna fluidsandelectrolytesunderconfinementinsingledigitnanopores AT stranomichaels fluidsandelectrolytesunderconfinementinsingledigitnanopores AT wangyuhuang fluidsandelectrolytesunderconfinementinsingledigitnanopores AT yaoyunchiao fluidsandelectrolytesunderconfinementinsingledigitnanopores AT zhancheng fluidsandelectrolytesunderconfinementinsingledigitnanopores AT zhangze fluidsandelectrolytesunderconfinementinsingledigitnanopores |