Cargando…

Synthesis and Surface Properties of Piperidinium-Based Herbicidal Ionic Liquids as a Potential Tool for Weed Control

[Image: see text] A series of piperidinium-based herbicidal ionic liquids (HILs) were synthesized and investigated. The designed HILs, obtained with high yields, consisted of cation 1-alkyl-1-methylpiperidinium with surface activity and a commercially available herbicidal anion: (3,6-dichloro-2-meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Wojcieszak, Marta, Syguda, Anna, Lewandowska, Aneta, Marcinkowska, Agnieszka, Siwińska-Ciesielczyk, Katarzyna, Wilkowska, Michalina, Kozak, Maciej, Materna, Katarzyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037321/
https://www.ncbi.nlm.nih.gov/pubmed/36877199
http://dx.doi.org/10.1021/acs.jafc.3c00356
Descripción
Sumario:[Image: see text] A series of piperidinium-based herbicidal ionic liquids (HILs) were synthesized and investigated. The designed HILs, obtained with high yields, consisted of cation 1-alkyl-1-methylpiperidinium with surface activity and a commercially available herbicidal anion: (3,6-dichloro-2-methoxy)benzoates (dicamba). The above-mentioned compounds were characterized in terms of surface activity and phytotoxicity. Preliminary results were obtained at higher wettability for all HILs when compared to the wettability of commercial Dicash, with HIL having 18 atoms in the carbon chain being the best effectiveness in wetting surfaces (weeds and crop leaves), whereby a drop of HILs with short alkyl chains (C(8)–C(10)) could not slide down a leaf. Our findings present that wettability or mobility of HILs drops varied depending on the plant species. Moreover, in this study, by zeta potential and atomic force microscopy measurements, we provide conclusive evidence to demonstrate that alkyl chain elongation plays a significant role in the evolution of surface properties of HILs.