Cargando…

Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting

[Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Bo, Mocanu, Felix Cosmin, Cho, Yuljae, Lim, Jongchul, Feng, Jiangtao, Zhang, Jingchao, Hong, John, Pak, Sangyeon, Park, Jong Bae, Lee, Young-Woo, Lee, Juwon, Kim, Byung-Sung, Morris, Stephen M., Sohn, Jung Inn, Cha, SeungNam, Kim, Jong Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037336/
https://www.ncbi.nlm.nih.gov/pubmed/36913627
http://dx.doi.org/10.1021/acs.nanolett.2c04851
_version_ 1784911855791112192
author Hou, Bo
Mocanu, Felix Cosmin
Cho, Yuljae
Lim, Jongchul
Feng, Jiangtao
Zhang, Jingchao
Hong, John
Pak, Sangyeon
Park, Jong Bae
Lee, Young-Woo
Lee, Juwon
Kim, Byung-Sung
Morris, Stephen M.
Sohn, Jung Inn
Cha, SeungNam
Kim, Jong Min
author_facet Hou, Bo
Mocanu, Felix Cosmin
Cho, Yuljae
Lim, Jongchul
Feng, Jiangtao
Zhang, Jingchao
Hong, John
Pak, Sangyeon
Park, Jong Bae
Lee, Young-Woo
Lee, Juwon
Kim, Byung-Sung
Morris, Stephen M.
Sohn, Jung Inn
Cha, SeungNam
Kim, Jong Min
author_sort Hou, Bo
collection PubMed
description [Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals.
format Online
Article
Text
id pubmed-10037336
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100373362023-03-25 Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting Hou, Bo Mocanu, Felix Cosmin Cho, Yuljae Lim, Jongchul Feng, Jiangtao Zhang, Jingchao Hong, John Pak, Sangyeon Park, Jong Bae Lee, Young-Woo Lee, Juwon Kim, Byung-Sung Morris, Stephen M. Sohn, Jung Inn Cha, SeungNam Kim, Jong Min Nano Lett [Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals. American Chemical Society 2023-03-13 /pmc/articles/PMC10037336/ /pubmed/36913627 http://dx.doi.org/10.1021/acs.nanolett.2c04851 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Hou, Bo
Mocanu, Felix Cosmin
Cho, Yuljae
Lim, Jongchul
Feng, Jiangtao
Zhang, Jingchao
Hong, John
Pak, Sangyeon
Park, Jong Bae
Lee, Young-Woo
Lee, Juwon
Kim, Byung-Sung
Morris, Stephen M.
Sohn, Jung Inn
Cha, SeungNam
Kim, Jong Min
Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title_full Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title_fullStr Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title_full_unstemmed Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title_short Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
title_sort evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037336/
https://www.ncbi.nlm.nih.gov/pubmed/36913627
http://dx.doi.org/10.1021/acs.nanolett.2c04851
work_keys_str_mv AT houbo evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT mocanufelixcosmin evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT choyuljae evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT limjongchul evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT fengjiangtao evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT zhangjingchao evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT hongjohn evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT paksangyeon evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT parkjongbae evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT leeyoungwoo evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT leejuwon evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT kimbyungsung evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT morrisstephenm evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT sohnjunginn evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT chaseungnam evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting
AT kimjongmin evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting