Cargando…
Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting
[Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037336/ https://www.ncbi.nlm.nih.gov/pubmed/36913627 http://dx.doi.org/10.1021/acs.nanolett.2c04851 |
_version_ | 1784911855791112192 |
---|---|
author | Hou, Bo Mocanu, Felix Cosmin Cho, Yuljae Lim, Jongchul Feng, Jiangtao Zhang, Jingchao Hong, John Pak, Sangyeon Park, Jong Bae Lee, Young-Woo Lee, Juwon Kim, Byung-Sung Morris, Stephen M. Sohn, Jung Inn Cha, SeungNam Kim, Jong Min |
author_facet | Hou, Bo Mocanu, Felix Cosmin Cho, Yuljae Lim, Jongchul Feng, Jiangtao Zhang, Jingchao Hong, John Pak, Sangyeon Park, Jong Bae Lee, Young-Woo Lee, Juwon Kim, Byung-Sung Morris, Stephen M. Sohn, Jung Inn Cha, SeungNam Kim, Jong Min |
author_sort | Hou, Bo |
collection | PubMed |
description | [Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals. |
format | Online Article Text |
id | pubmed-10037336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100373362023-03-25 Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting Hou, Bo Mocanu, Felix Cosmin Cho, Yuljae Lim, Jongchul Feng, Jiangtao Zhang, Jingchao Hong, John Pak, Sangyeon Park, Jong Bae Lee, Young-Woo Lee, Juwon Kim, Byung-Sung Morris, Stephen M. Sohn, Jung Inn Cha, SeungNam Kim, Jong Min Nano Lett [Image: see text] Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals. American Chemical Society 2023-03-13 /pmc/articles/PMC10037336/ /pubmed/36913627 http://dx.doi.org/10.1021/acs.nanolett.2c04851 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Hou, Bo Mocanu, Felix Cosmin Cho, Yuljae Lim, Jongchul Feng, Jiangtao Zhang, Jingchao Hong, John Pak, Sangyeon Park, Jong Bae Lee, Young-Woo Lee, Juwon Kim, Byung-Sung Morris, Stephen M. Sohn, Jung Inn Cha, SeungNam Kim, Jong Min Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title | Evolution of
Local Structural Motifs in Colloidal
Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title_full | Evolution of
Local Structural Motifs in Colloidal
Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title_fullStr | Evolution of
Local Structural Motifs in Colloidal
Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title_full_unstemmed | Evolution of
Local Structural Motifs in Colloidal
Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title_short | Evolution of
Local Structural Motifs in Colloidal
Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting |
title_sort | evolution of
local structural motifs in colloidal
quantum dot semiconductor nanocrystals leading to nanofaceting |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037336/ https://www.ncbi.nlm.nih.gov/pubmed/36913627 http://dx.doi.org/10.1021/acs.nanolett.2c04851 |
work_keys_str_mv | AT houbo evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT mocanufelixcosmin evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT choyuljae evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT limjongchul evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT fengjiangtao evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT zhangjingchao evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT hongjohn evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT paksangyeon evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT parkjongbae evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT leeyoungwoo evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT leejuwon evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT kimbyungsung evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT morrisstephenm evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT sohnjunginn evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT chaseungnam evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting AT kimjongmin evolutionoflocalstructuralmotifsincolloidalquantumdotsemiconductornanocrystalsleadingtonanofaceting |