Cargando…

Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions

[Image: see text] Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minut...

Descripción completa

Detalles Bibliográficos
Autores principales: Godoy-Hernandez, Albert, Asseri, Amer H., Purugganan, Aiden J., Jiko, Chimari, de Ram, Carol, Lill, Holger, Pabst, Martin, Mitsuoka, Kaoru, Gerle, Christoph, Bald, Dirk, McMillan, Duncan G. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037447/
https://www.ncbi.nlm.nih.gov/pubmed/36968527
http://dx.doi.org/10.1021/acscentsci.2c01170
_version_ 1784911882658775040
author Godoy-Hernandez, Albert
Asseri, Amer H.
Purugganan, Aiden J.
Jiko, Chimari
de Ram, Carol
Lill, Holger
Pabst, Martin
Mitsuoka, Kaoru
Gerle, Christoph
Bald, Dirk
McMillan, Duncan G. G.
author_facet Godoy-Hernandez, Albert
Asseri, Amer H.
Purugganan, Aiden J.
Jiko, Chimari
de Ram, Carol
Lill, Holger
Pabst, Martin
Mitsuoka, Kaoru
Gerle, Christoph
Bald, Dirk
McMillan, Duncan G. G.
author_sort Godoy-Hernandez, Albert
collection PubMed
description [Image: see text] Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo(3) (cbo(3)) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the “proton leak” in cbo(3), a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
format Online
Article
Text
id pubmed-10037447
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100374472023-03-25 Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions Godoy-Hernandez, Albert Asseri, Amer H. Purugganan, Aiden J. Jiko, Chimari de Ram, Carol Lill, Holger Pabst, Martin Mitsuoka, Kaoru Gerle, Christoph Bald, Dirk McMillan, Duncan G. G. ACS Cent Sci [Image: see text] Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo(3) (cbo(3)) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the “proton leak” in cbo(3), a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology. American Chemical Society 2023-02-22 /pmc/articles/PMC10037447/ /pubmed/36968527 http://dx.doi.org/10.1021/acscentsci.2c01170 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Godoy-Hernandez, Albert
Asseri, Amer H.
Purugganan, Aiden J.
Jiko, Chimari
de Ram, Carol
Lill, Holger
Pabst, Martin
Mitsuoka, Kaoru
Gerle, Christoph
Bald, Dirk
McMillan, Duncan G. G.
Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title_full Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title_fullStr Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title_full_unstemmed Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title_short Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions
title_sort rapid and highly stable membrane reconstitution by lair enables the study of physiological integral membrane protein functions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037447/
https://www.ncbi.nlm.nih.gov/pubmed/36968527
http://dx.doi.org/10.1021/acscentsci.2c01170
work_keys_str_mv AT godoyhernandezalbert rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT asseriamerh rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT puruggananaidenj rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT jikochimari rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT deramcarol rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT lillholger rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT pabstmartin rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT mitsuokakaoru rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT gerlechristoph rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT balddirk rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions
AT mcmillanduncangg rapidandhighlystablemembranereconstitutionbylairenablesthestudyofphysiologicalintegralmembraneproteinfunctions