Cargando…
NMR derived changes of lipoprotein particle concentrations related to impaired fasting glucose, impaired glucose tolerance, or manifest type 2 diabetes mellitus
BACKGROUND: Type 2 diabetes mellitus (T2D) and corresponding borderline states, impaired fasting glucose (IFG) and/or glucose tolerance (IGT), are associated with dyslipoproteinemia. It is important to distinguish between factors that cause T2D and that are the direct result of T2D. METHODS: The lip...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037821/ https://www.ncbi.nlm.nih.gov/pubmed/36964528 http://dx.doi.org/10.1186/s12944-023-01801-7 |
Sumario: | BACKGROUND: Type 2 diabetes mellitus (T2D) and corresponding borderline states, impaired fasting glucose (IFG) and/or glucose tolerance (IGT), are associated with dyslipoproteinemia. It is important to distinguish between factors that cause T2D and that are the direct result of T2D. METHODS: The lipoprotein subclass patterns of blood donors with IFG, IGT, with IFG combined with IGT, and T2D are analyzed by nuclear magnetic resonance (NMR) spectroscopy. The development of lipoprotein patterns with time is investigated by using samples retained for an average period of 6 years. In total 595 blood donors are classified by oral glucose tolerance test (oGTT) and their glycosylated hemoglobin (HbA1c) concentrations. Concentrations of lipoprotein particles of 15 different subclasses are analyzed in the 10,921 NMR spectra recorded under fasting and non-fasting conditions. The subjects are assumed healthy according to the strict regulations for blood donors before performing the oGTT. RESULTS: Under fasting conditions manifest T2D exhibits a significant concentration increase of the smallest HDL particles (HDL A) combined with a decrease in all other HDL subclasses. In contrast to other studies reviewed in this paper, a general concentration decrease of all LDL particles is observed that is most prominent for the smallest LDL particles (LDL A). Under normal nutritional conditions a large, significant increase of the concentrations of VLDL and chylomicrons is observed for all groups with IFG and/or IGT and most prominently for manifest T2D. As we show it is possible to obtain an estimate of the concentrations of the apolipoproteins Apo-A1, Apo-B100, and Apo-B48 from the NMR data. In the actual study cohort, under fasting conditions the concentrations of the lipoproteins are not increased significantly in T2D, under non-fasting conditions only Apo-B48 increases significantly. CONCLUSION: In contrast to other studies, in our cohort of “healthy” blood donors the T2D associated dyslipoproteinemia does not change the total concentrations of the lipoprotein particles produced in the liver under fasting and non-fasting conditions significantly but only their subclass distributions. Compared to the control group, under non-fasting conditions participants with IGT and IFG or T2D show a substantial increase of plasma concentrations of those lipoproteins that are produced in the intestinal tract. The intestinal insulin resistance becomes strongly observable. |
---|