Cargando…
CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction
BACKGROUND: Drug‒drug interactions (DDIs) are reactions between two or more drugs, i.e., possible situations that occur when two or more drugs are used simultaneously. DDIs act as an important link in both drug development and clinical treatment. Since it is not possible to study the interactions of...
Autores principales: | Yang, Zihao, Tong, Kuiyuan, Jin, Shiyu, Wang, Shiyan, Yang, Chao, Jiang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037822/ https://www.ncbi.nlm.nih.gov/pubmed/36959539 http://dx.doi.org/10.1186/s12859-023-05242-y |
Ejemplares similares
-
Chart Classification Using Siamese CNN
por: Bajić, Filip, et al.
Publicado: (2021) -
SiamOT: An Improved Siamese Network with Online Training for Visual Tracking
por: Gong, Xiaomei, et al.
Publicado: (2022) -
SiamHAS: Siamese Tracker with Hierarchical Attention Strategy for Aerial Tracking
por: Liu, Faxue, et al.
Publicado: (2023) -
SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network
por: Chen, Jia, et al.
Publicado: (2021) -
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021)