Cargando…
A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application
BACKGROUND: Using visual, biological, and electronic health records data as the sole input source, pretrained convolutional neural networks and conventional machine learning methods have been heavily employed for the identification of various malignancies. Initially, a series of preprocessing steps...
Autores principales: | Mokoatle, Mpho, Marivate, Vukosi, Mapiye, Darlington, Bornman, Riana, Hayes, Vanessa. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037872/ https://www.ncbi.nlm.nih.gov/pubmed/36959534 http://dx.doi.org/10.1186/s12859-023-05235-x |
Ejemplares similares
-
Discriminatory Gleason grade group signatures of prostate cancer: An application of machine learning methods
por: Mokoatle, Mpho, et al.
Publicado: (2022) -
Semantic Feature Extraction Using SBERT for Dementia Detection
por: Santander-Cruz, Yamanki, et al.
Publicado: (2022) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020) -
On the transparency of large AI models
por: Wang, Wanying, et al.
Publicado: (2023) -
Prostate Cancer in Southern Africa: Does Africa Hold Untapped
Potential to Add Value to the Current Understanding of a Common
Disease?
por: Hayes, Vanessa M., et al.
Publicado: (2017)