Cargando…
Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production
Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Cli...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038053/ https://www.ncbi.nlm.nih.gov/pubmed/36939195 http://dx.doi.org/10.1080/19490976.2023.2188874 |
_version_ | 1784912005161811968 |
---|---|
author | Pujo, Julien De Palma, Giada Lu, Jun Galipeau, Heather J. Surette, Michael G. Collins, Stephen M. Bercik, Premysl |
author_facet | Pujo, Julien De Palma, Giada Lu, Jun Galipeau, Heather J. Surette, Michael G. Collins, Stephen M. Bercik, Premysl |
author_sort | Pujo, Julien |
collection | PubMed |
description | Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Clinical and basic research studies also show that sex plays a role in pain perception, although the precise pathways are not elucidated. We investigated pain responses in germ-free and conventionally raised mice of both sexes, and assessed visceral sensitivity to colorectal distension, neuronal excitability of dorsal root ganglia (DRG) neurons and the production of substance P and calcitonin gene-related peptide (CGRP) in response to capsaicin or a mixture of G-protein coupled receptor (GPCR) agonists. Germ-free mice displayed greater in vivo responses to colonic distention than conventional mice, with no differences between males and females. Pretreatment with intracolonic capsaicin or GPCR agonists increased responses in conventional, but not in germ-free mice. In DRG neurons, gut microbiota and sex had no effect on neuronal activation by capsaicin or GPCR agonists. While stimulated production of substance P by DRG neurons was similar in germ-free and conventional mice, with no additional effect of sex, the CGRP production was higher in germ-free mice, mainly in females. Absence of gut microbiota increases visceral sensitivity to colorectal distention in both male and female mice. This is, at least in part, due to increased production of CGRP by DRG neurons, which is mainly evident in female mice. However, central mechanisms are also likely involved in this process. |
format | Online Article Text |
id | pubmed-10038053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-100380532023-03-25 Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production Pujo, Julien De Palma, Giada Lu, Jun Galipeau, Heather J. Surette, Michael G. Collins, Stephen M. Bercik, Premysl Gut Microbes Research Paper Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Clinical and basic research studies also show that sex plays a role in pain perception, although the precise pathways are not elucidated. We investigated pain responses in germ-free and conventionally raised mice of both sexes, and assessed visceral sensitivity to colorectal distension, neuronal excitability of dorsal root ganglia (DRG) neurons and the production of substance P and calcitonin gene-related peptide (CGRP) in response to capsaicin or a mixture of G-protein coupled receptor (GPCR) agonists. Germ-free mice displayed greater in vivo responses to colonic distention than conventional mice, with no differences between males and females. Pretreatment with intracolonic capsaicin or GPCR agonists increased responses in conventional, but not in germ-free mice. In DRG neurons, gut microbiota and sex had no effect on neuronal activation by capsaicin or GPCR agonists. While stimulated production of substance P by DRG neurons was similar in germ-free and conventional mice, with no additional effect of sex, the CGRP production was higher in germ-free mice, mainly in females. Absence of gut microbiota increases visceral sensitivity to colorectal distention in both male and female mice. This is, at least in part, due to increased production of CGRP by DRG neurons, which is mainly evident in female mice. However, central mechanisms are also likely involved in this process. Taylor & Francis 2023-03-20 /pmc/articles/PMC10038053/ /pubmed/36939195 http://dx.doi.org/10.1080/19490976.2023.2188874 Text en © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Pujo, Julien De Palma, Giada Lu, Jun Galipeau, Heather J. Surette, Michael G. Collins, Stephen M. Bercik, Premysl Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title | Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title_full | Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title_fullStr | Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title_full_unstemmed | Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title_short | Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production |
title_sort | gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (cgrp) production |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038053/ https://www.ncbi.nlm.nih.gov/pubmed/36939195 http://dx.doi.org/10.1080/19490976.2023.2188874 |
work_keys_str_mv | AT pujojulien gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT depalmagiada gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT lujun gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT galipeauheatherj gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT surettemichaelg gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT collinsstephenm gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction AT bercikpremysl gutmicrobiotamodulatesvisceralsensitivitythroughcalcitoningenerelatedpeptidecgrpproduction |