Cargando…
A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity
OBJECTIVE: Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast canc...
Autores principales: | Wang, Yusong, Wang, Mozhi, Yu, Keda, Xu, Shouping, Qiu, Pengfei, Lyu, Zhidong, Cui, Mingke, Zhang, Qiang, Xu, Yingying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Compuscript
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038070/ https://www.ncbi.nlm.nih.gov/pubmed/36971132 http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0513 |
Ejemplares similares
-
A generalized non-linear model predicting efficacy of neoadjuvant therapy in HER2+ breast cancer
por: Wang, Yusong, et al.
Publicado: (2023) -
Chronic stress-induced immune dysregulation in breast cancer: Implications of psychosocial factors
por: Chen, Xiuyun, et al.
Publicado: (2022) -
Predicting Pathological Complete Response in Breast Cancer After Two Cycles of Neoadjuvant Chemotherapy by Tumor Reduction Rate: A Retrospective Case-Control Study
por: Yao, Litong, et al.
Publicado: (2023) -
An Immune Model to Predict Prognosis of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy Based on Support Vector Machine
por: Wang, Mozhi, et al.
Publicado: (2021) -
Impact of hormone receptor, HER2, and Ki-67 status conversions on survival after neoadjuvant chemotherapy in breast cancer patients: a retrospective study
por: Chen, Yuhai, et al.
Publicado: (2022)