Cargando…
Prediction of HIV-1 protease resistance using genotypic, phenotypic, and molecular information with artificial neural networks
Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative relations between genotype and phenotype observations for each inhibitor with cell-based assays requires time and money-consuming experiments. Machine learning models are good options for tackling thes...
Autores principales: | Tunc, Huseyin, Dogan, Berna, Darendeli Kiraz, Büşra Nur, Sari, Murat, Durdagi, Serdar, Kotil, Seyfullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038082/ https://www.ncbi.nlm.nih.gov/pubmed/36967989 http://dx.doi.org/10.7717/peerj.14987 |
Ejemplares similares
-
Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy
por: Tunc, Huseyin, et al.
Publicado: (2023) -
Effect of sojourn time distributions on the early dynamics of COVID-19 outbreak
por: Tunc, Huseyin, et al.
Publicado: (2023) -
Using a real-world network to model the trade-off between stay-at-home restriction, vaccination, social distancing and working hours on COVID-19 dynamics
por: Nashebi, Ramin, et al.
Publicado: (2022) -
In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2
por: Erol, Ismail, et al.
Publicado: (2021) -
Editorial: Towards genome interpretation: Computational methods to model the genotype-phenotype relationship
por: Raimondi, Daniele, et al.
Publicado: (2022)