Cargando…
Atria: an ultra-fast and accurate trimmer for adapter and quality trimming
With advances in next-generation sequencing, adapters attached to reads and low-quality bases directly and implicitly hinder downstream analysis. For example, they can produce false-positive single nucleotide polymorphisms (SNP), and generate fragmented assemblies. There is a need for a fast trimmin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
GigaScience Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038132/ https://www.ncbi.nlm.nih.gov/pubmed/36967729 http://dx.doi.org/10.46471/gigabyte.31 |
Sumario: | With advances in next-generation sequencing, adapters attached to reads and low-quality bases directly and implicitly hinder downstream analysis. For example, they can produce false-positive single nucleotide polymorphisms (SNP), and generate fragmented assemblies. There is a need for a fast trimming algorithm to remove adapters precisely, especially in read tails with relatively low quality. Here, we present Atria, a trimming program that matches the adapters in paired reads and finds possible overlapped regions using a fast and carefully designed byte-based matching algorithm (O (n) time with O (1) space). Atria also implements multi-threading in both sequence processing and file compression and supports single-end reads. Compared with other trimmers, Atria performs favorably in various trimming and runtime benchmarks of both simulated and real data. We also provide a fast and lightweight byte-based matching algorithm, which can be used in various short-sequence matching applications, such as primer search and seed scanning before alignment. |
---|