Cargando…

NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit

Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen...

Descripción completa

Detalles Bibliográficos
Autor principal: Moshiri, Niema
Formato: Online Artículo Texto
Lenguaje:English
Publicado: GigaScience Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038133/
https://www.ncbi.nlm.nih.gov/pubmed/36968795
http://dx.doi.org/10.46471/gigabyte.37
Descripción
Sumario:Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies.