Cargando…
NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
GigaScience Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038133/ https://www.ncbi.nlm.nih.gov/pubmed/36968795 http://dx.doi.org/10.46471/gigabyte.37 |
_version_ | 1784912020184760320 |
---|---|
author | Moshiri, Niema |
author_facet | Moshiri, Niema |
author_sort | Moshiri, Niema |
collection | PubMed |
description | Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies. |
format | Online Article Text |
id | pubmed-10038133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | GigaScience Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-100381332023-03-25 NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit Moshiri, Niema GigaByte Technical Release Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies. GigaScience Press 2022-01-24 /pmc/articles/PMC10038133/ /pubmed/36968795 http://dx.doi.org/10.46471/gigabyte.37 Text en © The Author(s) 2022. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Release Moshiri, Niema NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title | NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title_full | NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title_fullStr | NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title_full_unstemmed | NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title_short | NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit |
title_sort | niemagraphgen: a memory-efficient global-scale contact network simulation toolkit |
topic | Technical Release |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038133/ https://www.ncbi.nlm.nih.gov/pubmed/36968795 http://dx.doi.org/10.46471/gigabyte.37 |
work_keys_str_mv | AT moshiriniema niemagraphgenamemoryefficientglobalscalecontactnetworksimulationtoolkit |