Cargando…

NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit

Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen...

Descripción completa

Detalles Bibliográficos
Autor principal: Moshiri, Niema
Formato: Online Artículo Texto
Lenguaje:English
Publicado: GigaScience Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038133/
https://www.ncbi.nlm.nih.gov/pubmed/36968795
http://dx.doi.org/10.46471/gigabyte.37
_version_ 1784912020184760320
author Moshiri, Niema
author_facet Moshiri, Niema
author_sort Moshiri, Niema
collection PubMed
description Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies.
format Online
Article
Text
id pubmed-10038133
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher GigaScience Press
record_format MEDLINE/PubMed
spelling pubmed-100381332023-03-25 NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit Moshiri, Niema GigaByte Technical Release Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies. GigaScience Press 2022-01-24 /pmc/articles/PMC10038133/ /pubmed/36968795 http://dx.doi.org/10.46471/gigabyte.37 Text en © The Author(s) 2022. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Release
Moshiri, Niema
NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_full NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_fullStr NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_full_unstemmed NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_short NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_sort niemagraphgen: a memory-efficient global-scale contact network simulation toolkit
topic Technical Release
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038133/
https://www.ncbi.nlm.nih.gov/pubmed/36968795
http://dx.doi.org/10.46471/gigabyte.37
work_keys_str_mv AT moshiriniema niemagraphgenamemoryefficientglobalscalecontactnetworksimulationtoolkit