Cargando…

Swip-1 promotes exocytosis of glue granules in the exocrine Drosophila salivary gland

Exocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lehne, Franziska, Bogdan, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038153/
https://www.ncbi.nlm.nih.gov/pubmed/36727484
http://dx.doi.org/10.1242/jcs.260366
Descripción
Sumario:Exocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved actin-crosslinking protein Swip-1 as a novel regulator controlling exocytosis of glue granules in the Drosophila salivary gland. Real-time imaging revealed that Swip-1 is simultaneously recruited with F-actin onto secreting granules in proximity to the apical membrane. We observed that Swip-1 is rapidly cleared at the point of secretory vesicle fusion and colocalizes with actomyosin network around the fused vesicles. Loss of Swip-1 function impairs secretory cargo expulsion, resulting in strongly delayed secretion. Thus, our results uncover a novel role of Swip-1 in secretory vesicle compression and expulsion of cargo during regulated exocytosis. Remarkably, this function neither requires Ca(2+) binding nor dimerization of Swip-1. Our data rather suggest that Swip-1 regulates actomyosin activity upstream of Rho-GTPase signaling to drive proper vesicle membrane crumpling and expulsion of cargo.