Cargando…
Learning from pseudo-lesion: a self-supervised framework for COVID-19 diagnosis
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019, and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based approaches have shown impressive performance in myriad...
Autores principales: | Li, Zhongliang, Li, Xuechen, Jin, Zhihao, Shen, Linlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038387/ https://www.ncbi.nlm.nih.gov/pubmed/37155461 http://dx.doi.org/10.1007/s00521-023-08259-9 |
Ejemplares similares
-
Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images
por: Lonseko, Zenebe Markos, et al.
Publicado: (2023) -
Self-supervised pseudo-colorizing of masked cells
por: Wagner, Royden, et al.
Publicado: (2023) -
A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning
por: Li, Zekun, et al.
Publicado: (2021) -
Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation
por: Putri, Wenny Ramadha, et al.
Publicado: (2022) -
TSRNet: Diagnosis of COVID-19 based on self-supervised learning and hybrid ensemble model
por: Sun, Junding, et al.
Publicado: (2022)