Cargando…
Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization
Multikernel clustering achieves clustering of linearly inseparable data by applying a kernel method to samples in multiple views. A localized SimpleMKKM (LI-SimpleMKKM) algorithm has recently been proposed to perform min-max optimization in multikernel clustering where each instance is only required...
Autores principales: | Qiu, Jiaji, Xu, Huiying, Zhu, Xinzhong, Adjeisah, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038733/ https://www.ncbi.nlm.nih.gov/pubmed/36970247 http://dx.doi.org/10.1155/2023/6654304 |
Ejemplares similares
-
Kernel Probabilistic K-Means Clustering
por: Liu, Bowen, et al.
Publicado: (2021) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017) -
Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering
por: Elazab, Ahmed, et al.
Publicado: (2015) -
On the microlocal regularity of the Schrödinger kernel
por: Craig, W
Publicado: (1996) -
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
por: Xiong, Liyan, et al.
Publicado: (2019)