Cargando…
Long-term cognitive decline prediction based on multi-modal data using Multimodal3DSiameseNet: transfer learning from Alzheimer’s disease to Parkinson’s disease
PURPOSE: Monitoring and predicting the cognitive state of subjects with neurodegenerative disorders is crucial to provide appropriate treatment as soon as possible. In this work, we present a machine learning approach using multimodal data (brain MRI and clinical) from two early medical visits, to p...
Autores principales: | Ostertag, Cécilia, Visani, Muriel, Urruty, Thierry, Beurton-Aimar, Marie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038771/ https://www.ncbi.nlm.nih.gov/pubmed/36964477 http://dx.doi.org/10.1007/s11548-023-02866-6 |
Ejemplares similares
-
Multimodal Classification of Parkinson’s Disease in Home Environments with Resiliency to Missing Modalities
por: Heidarivincheh, Farnoosh, et al.
Publicado: (2021) -
Modality preserving U-Net for segmentation of multimodal medical images
por: Wu, Bingxuan, et al.
Publicado: (2023) -
CMMCSegNet: Cross-Modality Multicascade Indirect LGE Segmentation on Multimodal Cardiac MR
por: Wang, Yu, et al.
Publicado: (2021) -
Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features
por: Almgren, Hannes, et al.
Publicado: (2023) -
Multimodal Imaging Signatures of Parkinson's Disease
por: Bowman, F. DuBois, et al.
Publicado: (2016)