Cargando…
Evolution process and failure mechanism of a large expressway roadside landslide
Site investigation, deformation monitoring, laboratory test, and theoretical calculations were used to analyze the evolution details of a large expressway roadside landslide during the start-up sliding process. The monitoring results show that the initial deformation and failure occurred on the prot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039046/ https://www.ncbi.nlm.nih.gov/pubmed/36964153 http://dx.doi.org/10.1038/s41598-023-32055-z |
Sumario: | Site investigation, deformation monitoring, laboratory test, and theoretical calculations were used to analyze the evolution details of a large expressway roadside landslide during the start-up sliding process. The monitoring results show that the initial deformation and failure occurred on the protective wall at the slope toe, then gradually developed to the upper part of the slope, and finally led to tensile cracks at the slope trailing edge. Accelerated deformation of the slope support structures, such as the protective wall at the slope toe, the anti-slide pile, and the anchor cable, were observed during the continuous extreme rainfall. The infiltrated rainwater can change the weight, the osmotic pressure, the anti-sliding force, the sliding force of the sliding mass, and further soften the fully weathered tuff soil and reduce its strength, resulting in the landslide occurrence. Block the slope surface runoff is an effective measure to reduce the landslide risk. The current analysis will be helpful to the prevention, control, and emergency disposal of similar landslides. |
---|