Cargando…
Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
The Dice similarity coefficient (DSC) is both a widely used metric and loss function for biomedical image segmentation due to its robustness to class imbalance. However, it is well known that the DSC loss is poorly calibrated, resulting in overconfident predictions that cannot be usefully interprete...
Autores principales: | Yeung, Michael, Rundo, Leonardo, Nan, Yang, Sala, Evis, Schönlieb, Carola-Bibiane, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039156/ https://www.ncbi.nlm.nih.gov/pubmed/36474089 http://dx.doi.org/10.1007/s10278-022-00735-3 |
Ejemplares similares
-
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy
por: Yeung, Michael, et al.
Publicado: (2021) -
Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons
for Amplifying the Signal While Reducing the Noise
por: Driggs, Derek, et al.
Publicado: (2021) -
A multi‐contrast MRI approach to thalamus segmentation
por: Corona, Veronica, et al.
Publicado: (2020) -
Integrating Artificial Intelligence Tools in the Clinical Research Setting: The Ovarian Cancer Use Case
por: Escudero Sanchez, Lorena, et al.
Publicado: (2023)