Cargando…
Temporal visitation patterns of points of interest in cities on a planetary scale: a network science and machine learning approach
We aim to study the temporal patterns of activity in points of interest of cities around the world. In order to do so, we use the data provided by the online location-based social network Foursquare, where users make check-ins that indicate points of interest in the city. The data set comprises more...
Autores principales: | Betancourt, Francisco, Riascos, Alejandro P., Mateos, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039356/ https://www.ncbi.nlm.nih.gov/pubmed/36966183 http://dx.doi.org/10.1038/s41598-023-32074-w |
Ejemplares similares
-
Planetary sciences
por: de Pater, Imke, et al.
Publicado: (2015) -
Disparate patterns of movements and visits to points of interest located in urban hotspots across US metropolitan cities during COVID-19
por: Li, Qingchun, et al.
Publicado: (2021) -
Galactic planetary science
por: Tinetti, Giovanna
Publicado: (2014) -
Solar planetary systems: stardust to terrestrial and extraterrestrial planetary sciences
por: Bhattacharya, Asit B, et al.
Publicado: (2017) -
Networks and long-range mobility in cities: A study of more than one billion taxi trips in New York City
por: Riascos, A. P., et al.
Publicado: (2020)