Cargando…
The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells
BACKGROUND: Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds ba...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039520/ https://www.ncbi.nlm.nih.gov/pubmed/36964481 http://dx.doi.org/10.1186/s12575-023-00197-z |
Sumario: | BACKGROUND: Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA). MATERIALS AND METHODS: In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds' hydrophilicity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggrecan, and Sox9 genes as markers of cartilage differentiation. RESULTS: The nanocomposites had an elastic modulus within a range of 0.71–1.30 MPa and 0.65–0.43 MPa, in dry and wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incorporation can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels. CONCLUSIONS: Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondrogenic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the general features of PGS to prepare a promising scaffold for cartilage tissue engineering. GRAPHICAL ABSTRACT: [Image: see text] |
---|