Cargando…
Enhanced 1,3-propanediol production with high yield from glycerol through a novel Klebsiella–Shewanella co-culture
BACKGROUND: 1,3-Propanediol (1,3-PDO) is a platform compound, which has been widely used in food, pharmaceutical and cosmetic industries. Compared with chemical methods, the biological synthesis of 1,3-PDO has shown promising applications owing to its mild conditions and environmental friendliness....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039557/ https://www.ncbi.nlm.nih.gov/pubmed/36964595 http://dx.doi.org/10.1186/s13068-023-02304-4 |
Sumario: | BACKGROUND: 1,3-Propanediol (1,3-PDO) is a platform compound, which has been widely used in food, pharmaceutical and cosmetic industries. Compared with chemical methods, the biological synthesis of 1,3-PDO has shown promising applications owing to its mild conditions and environmental friendliness. However, the biological synthesis of 1,3-PDO still has the problem of low titer and yield due to the shortage of reducing powers. RESULTS: In this study, Klebsiella sp. strain YT7 was successfully isolated, which can synthesize 11.30 g/L of 1,3-PDO from glycerol in flasks. The intracellular redox regulation strategy based on the addition of electron mediators can increase the 1,3-PDO titer to 28.01 g/L. Furthermore, a co-culturing system consisting of strain YT7 and Shewanella oneidensis MR-1 was established, which can eliminate the supplementation of exogenous electron mediators and reduce the by-products accumulation. The 1,3-PDO yield reached 0.44 g/g and the final titer reached 62.90 g/L. The increased titer and yield were attributed to the increased redox levels and the consumption of by-products. CONCLUSIONS: A two-bacterium co-culture system with Klebsiella sp. strain YT7 and S. oneidensis strain MR-1 was established, which realized the substitution of exogenous electron mediators and the reduction of by-product accumulation. Results provided theoretical basis for the high titer of 1,3-PDO production with low by-product concentration. |
---|