Cargando…
Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein
Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental rol...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039839/ https://www.ncbi.nlm.nih.gov/pubmed/36696009 http://dx.doi.org/10.1007/s12035-023-03236-8 |
_version_ | 1784912354773827584 |
---|---|
author | Borgonetti, Vittoria Galeotti, Nicoletta |
author_facet | Borgonetti, Vittoria Galeotti, Nicoletta |
author_sort | Borgonetti, Vittoria |
collection | PubMed |
description | Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental role in the regulation of these processes. The ELAV RNA-binding proteins HuR and HuD are involved in the promotion of inflammatory phenomena and in neuronal development and maintenance, respectively. Thus, the aim of this study was to investigate the role of HuR and HuD in demyelination-associated neuropathic pain in the mouse experimental autoimmune encephalomyelitis (EAE) model. HuR resulted overexpressed in the spinal cord of MOG(35-55)–EAE and PLP(139-151)–EAE mice and was detected in CD11b + cells. Conversely, HuD was largely downregulated in the MOG–EAE spinal cord, along with GAP43 and neurofilament H, while in PLP-EAE mice, HuD and neuronal markers remained unaltered. Intranasal antisense oligonucleotide (ASO) delivery to knockdown HuR, increased myelin basic protein expression, and Luxol Fast Blue staining in both EAE models, an indication of increased myelin content. These effects temporally coincided with attenuation of pain hypersensitivity. Anti-HuR ASO increased the expression of HuD in GAP43-expressing cells and promoted a HuD-mediated neuroprotective activity in MOG–EAE mice, while in PLP–EAE mice, HuR silencing dampened pro-inflammatory responses mediated by spinal microglia activation. In conclusion, anti-HuR ASO showed myelin protection at analgesic doses with multitarget mechanisms, and it deserves further consideration as an innovative agent to counteract demyelination in neuropathic pain states. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12035-023-03236-8. |
format | Online Article Text |
id | pubmed-10039839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-100398392023-03-27 Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein Borgonetti, Vittoria Galeotti, Nicoletta Mol Neurobiol Article Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental role in the regulation of these processes. The ELAV RNA-binding proteins HuR and HuD are involved in the promotion of inflammatory phenomena and in neuronal development and maintenance, respectively. Thus, the aim of this study was to investigate the role of HuR and HuD in demyelination-associated neuropathic pain in the mouse experimental autoimmune encephalomyelitis (EAE) model. HuR resulted overexpressed in the spinal cord of MOG(35-55)–EAE and PLP(139-151)–EAE mice and was detected in CD11b + cells. Conversely, HuD was largely downregulated in the MOG–EAE spinal cord, along with GAP43 and neurofilament H, while in PLP-EAE mice, HuD and neuronal markers remained unaltered. Intranasal antisense oligonucleotide (ASO) delivery to knockdown HuR, increased myelin basic protein expression, and Luxol Fast Blue staining in both EAE models, an indication of increased myelin content. These effects temporally coincided with attenuation of pain hypersensitivity. Anti-HuR ASO increased the expression of HuD in GAP43-expressing cells and promoted a HuD-mediated neuroprotective activity in MOG–EAE mice, while in PLP–EAE mice, HuR silencing dampened pro-inflammatory responses mediated by spinal microglia activation. In conclusion, anti-HuR ASO showed myelin protection at analgesic doses with multitarget mechanisms, and it deserves further consideration as an innovative agent to counteract demyelination in neuropathic pain states. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12035-023-03236-8. Springer US 2023-01-25 2023 /pmc/articles/PMC10039839/ /pubmed/36696009 http://dx.doi.org/10.1007/s12035-023-03236-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Borgonetti, Vittoria Galeotti, Nicoletta Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title | Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title_full | Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title_fullStr | Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title_full_unstemmed | Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title_short | Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein |
title_sort | posttranscriptional regulation of gene expression participates in the myelin restoration in mouse models of multiple sclerosis: antisense modulation of hur and hud elav rna binding protein |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039839/ https://www.ncbi.nlm.nih.gov/pubmed/36696009 http://dx.doi.org/10.1007/s12035-023-03236-8 |
work_keys_str_mv | AT borgonettivittoria posttranscriptionalregulationofgeneexpressionparticipatesinthemyelinrestorationinmousemodelsofmultiplesclerosisantisensemodulationofhurandhudelavrnabindingprotein AT galeottinicoletta posttranscriptionalregulationofgeneexpressionparticipatesinthemyelinrestorationinmousemodelsofmultiplesclerosisantisensemodulationofhurandhudelavrnabindingprotein |