Cargando…
Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations
Explainable machine learning for molecular toxicity prediction is a promising approach for efficient drug development and chemical safety. A predictive ML model of toxicity can reduce experimental cost and time while mitigating ethical concerns by significantly reducing animal and clinical testing....
Autores principales: | Sharma, Bhanushee, Chenthamarakshan, Vijil, Dhurandhar, Amit, Pereira, Shiranee, Hendler, James A., Dordick, Jonathan S., Das, Payel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039880/ https://www.ncbi.nlm.nih.gov/pubmed/36966203 http://dx.doi.org/10.1038/s41598-023-31169-8 |
Ejemplares similares
-
An end-to-end deep learning framework for translating mass spectra to de-novo molecules
por: Litsa, Eleni E., et al.
Publicado: (2023) -
A Small Step Toward
Generalizability: Training a Machine
Learning Scoring Function for Structure-Based Virtual Screening
por: Scantlebury, Jack, et al.
Publicado: (2023) -
BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations
por: ZHANG, BOYU, et al.
Publicado: (2023) -
Neuroimaging explanations of age-related differences in task performance
por: Steffener, Jason, et al.
Publicado: (2014) -
Why Employees Experience Burnout: An Explanation of Illegitimate Tasks
por: Ouyang, Chenhui, et al.
Publicado: (2022)