Cargando…
Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040415/ https://www.ncbi.nlm.nih.gov/pubmed/36921598 http://dx.doi.org/10.1016/j.xcrm.2023.100976 |
_version_ | 1784912477570465792 |
---|---|
author | Wang, Bryan Z. Nash, Trevor R. Zhang, Xiaokan Rao, Jenny Abriola, Laura Kim, Youngbin Zakharov, Sergey Kim, Michael Luo, Lori J. Morsink, Margaretha Liu, Bohao Lock, Roberta I. Fleischer, Sharon Tamargo, Manuel A. Bohnen, Michael Welch, Carrie L. Chung, Wendy K. Marx, Steven O. Surovtseva, Yulia V. Vunjak-Novakovic, Gordana Fine, Barry M. |
author_facet | Wang, Bryan Z. Nash, Trevor R. Zhang, Xiaokan Rao, Jenny Abriola, Laura Kim, Youngbin Zakharov, Sergey Kim, Michael Luo, Lori J. Morsink, Margaretha Liu, Bohao Lock, Roberta I. Fleischer, Sharon Tamargo, Manuel A. Bohnen, Michael Welch, Carrie L. Chung, Wendy K. Marx, Steven O. Surovtseva, Yulia V. Vunjak-Novakovic, Gordana Fine, Barry M. |
author_sort | Wang, Bryan Z. |
collection | PubMed |
description | Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation. |
format | Online Article Text |
id | pubmed-10040415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100404152023-03-28 Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery Wang, Bryan Z. Nash, Trevor R. Zhang, Xiaokan Rao, Jenny Abriola, Laura Kim, Youngbin Zakharov, Sergey Kim, Michael Luo, Lori J. Morsink, Margaretha Liu, Bohao Lock, Roberta I. Fleischer, Sharon Tamargo, Manuel A. Bohnen, Michael Welch, Carrie L. Chung, Wendy K. Marx, Steven O. Surovtseva, Yulia V. Vunjak-Novakovic, Gordana Fine, Barry M. Cell Rep Med Report Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation. Elsevier 2023-03-14 /pmc/articles/PMC10040415/ /pubmed/36921598 http://dx.doi.org/10.1016/j.xcrm.2023.100976 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Report Wang, Bryan Z. Nash, Trevor R. Zhang, Xiaokan Rao, Jenny Abriola, Laura Kim, Youngbin Zakharov, Sergey Kim, Michael Luo, Lori J. Morsink, Margaretha Liu, Bohao Lock, Roberta I. Fleischer, Sharon Tamargo, Manuel A. Bohnen, Michael Welch, Carrie L. Chung, Wendy K. Marx, Steven O. Surovtseva, Yulia V. Vunjak-Novakovic, Gordana Fine, Barry M. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title | Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title_full | Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title_fullStr | Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title_full_unstemmed | Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title_short | Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
title_sort | engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040415/ https://www.ncbi.nlm.nih.gov/pubmed/36921598 http://dx.doi.org/10.1016/j.xcrm.2023.100976 |
work_keys_str_mv | AT wangbryanz engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT nashtrevorr engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT zhangxiaokan engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT raojenny engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT abriolalaura engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT kimyoungbin engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT zakharovsergey engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT kimmichael engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT luolorij engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT morsinkmargaretha engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT liubohao engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT lockrobertai engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT fleischersharon engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT tamargomanuela engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT bohnenmichael engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT welchcarriel engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT chungwendyk engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT marxsteveno engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT surovtsevayuliav engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT vunjaknovakovicgordana engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery AT finebarrym engineeredcardiactissuemodelofrestrictivecardiomyopathyfordrugdiscovery |