Cargando…
Multi-environment analysis enhances genomic prediction accuracy of agronomic traits in sesame
Introduction: Sesame is an ancient oilseed crop containing many valuable nutritional components. The demand for sesame seeds and their products has recently increased worldwide, making it necessary to enhance the development of high-yielding cultivars. One approach to enhance genetic gain in breedin...
Autores principales: | Sabag, Idan, Bi, Ye, Peleg, Zvi, Morota, Gota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040590/ https://www.ncbi.nlm.nih.gov/pubmed/36992702 http://dx.doi.org/10.3389/fgene.2023.1108416 |
Ejemplares similares
-
Genome-wide association analysis uncovers the genetic architecture of tradeoff between flowering date and yield components in sesame
por: Sabag, Idan, et al.
Publicado: (2021) -
Kernel-based whole-genome prediction of complex traits: a review
por: Morota, Gota, et al.
Publicado: (2014) -
Do stronger measures of genomic connectedness enhance prediction accuracies across management units?
por: Yu, Haipeng, et al.
Publicado: (2018) -
Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits
por: Morota, Gota, et al.
Publicado: (2014) -
Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping
por: Baba, Toshimi, et al.
Publicado: (2020)