Cargando…
Inversion models of aboveground grassland biomass in Xinjiang based on multisource data
Grassland biomass monitoring is essential for assessing grassland health and carbon cycling. However, monitoring grassland biomass in drylands based on satellite remote sensing is challenging.Statistical regression models and machine learning have been used for the construction of grassland biomass...
Autores principales: | Zhang, R. P., Zhou, J. H., Guo, J., Miao, Y. H., Zhang, L. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040755/ https://www.ncbi.nlm.nih.gov/pubmed/36993850 http://dx.doi.org/10.3389/fpls.2023.1152432 |
Ejemplares similares
-
Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient
por: Liu, Yongjie, et al.
Publicado: (2021) -
Precipitation and temperature regulate species diversity, plant coverage and aboveground biomass through opposing mechanisms in large-scale grasslands
por: Yao, Zhenyu, et al.
Publicado: (2022) -
Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms
por: Ma, Jiamin, et al.
Publicado: (2023) -
Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China
por: Han, Wanqiang, et al.
Publicado: (2023) -
Aboveground Biomass of Wetland Vegetation Under Climate Change in the Western Songnen Plain
por: Wang, Yanji, et al.
Publicado: (2022)