Cargando…
Development and validation of machine learning models to predict survival of patients with resected stage-III NSCLC
OBJECTIVE: To compare the performance of three machine learning algorithms with the tumor, node, and metastasis (TNM) staging system in survival prediction and validate the individual adjuvant treatment recommendations plan based on the optimal model. METHODS: In this study, we trained three machine...
Autores principales: | Jin, Long, Zhao, Qifan, Fu, Shenbo, Cao, Fei, Hou, Bin, Ma, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040845/ https://www.ncbi.nlm.nih.gov/pubmed/36994203 http://dx.doi.org/10.3389/fonc.2023.1092478 |
Ejemplares similares
-
Development and External Validation of a Nomogram to Predict Recurrence-Free Survival After R0 Resection for Stage II/III Gastric Cancer: An International Multicenter Study
por: Lu, Jun, et al.
Publicado: (2020) -
Survival after wedge resection versus lobectomy for stage IA second primary NSCLC with previous lung cancer-directed surgery
por: Song, Congkuan, et al.
Publicado: (2022) -
Treatment Patterns for Patients With Unresected Stage III NSCLC: Analysis of the Surveillance, Epidemiology, and End Results (SEER) Database
por: Shang, Shijie, et al.
Publicado: (2022) -
Evaluation of Postoperative Radiotherapy Effect on Survival of Resected Stage III-N2 Non-small Cell Lung Cancer Patients
por: Gao, Fei, et al.
Publicado: (2020) -
Analysis of predictive factors of unforeseen nodal metastases in resected clinical stage I NSCLC
por: Gallina, Filippo Tommaso, et al.
Publicado: (2023)