Cargando…

A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments

The last glacial cycle provides the opportunity to investigate large changes in the Atlantic Meridional Overturning Circulation (AMOC) beyond the small fluctuations evidenced from direct measurements. Paleotemperature records from Greenland and the North Atlantic show an abrupt variability, called D...

Descripción completa

Detalles Bibliográficos
Autores principales: Davtian, Nina, Bard, Edouard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041096/
https://www.ncbi.nlm.nih.gov/pubmed/36913575
http://dx.doi.org/10.1073/pnas.2209558120
_version_ 1784912631759372288
author Davtian, Nina
Bard, Edouard
author_facet Davtian, Nina
Bard, Edouard
author_sort Davtian, Nina
collection PubMed
description The last glacial cycle provides the opportunity to investigate large changes in the Atlantic Meridional Overturning Circulation (AMOC) beyond the small fluctuations evidenced from direct measurements. Paleotemperature records from Greenland and the North Atlantic show an abrupt variability, called Dansgaard–Oeschger (DO) events, which is associated with abrupt changes of the AMOC. These DO events also have Southern Hemisphere counterparts via the thermal bipolar seesaw, a concept describing the meridional heat transport leading to asynchronous temperature changes between both hemispheres. However, temperature records from the North Atlantic show more pronounced DO cooling events during massive releases of icebergs known as Heinrich (H) events, contrary to ice-core–based temperature records from Greenland. Here, we present high-resolution temperature records from the Iberian Margin and a Bipolar Seesaw Index to discriminate DO cooling events with and without H events. We show that the thermal bipolar seesaw model generates synthetic Southern Hemisphere temperature records that best resemble Antarctic temperature records when using temperature records from the Iberian Margin as inputs. Our data-model comparison emphasizes the role of the thermal bipolar seesaw in the abrupt temperature variability of both hemispheres with a clear enhancement during DO cooling events with H events, implying a relationship that is more complex than a simple flip-flop between two climate states linked to a tipping point threshold.
format Online
Article
Text
id pubmed-10041096
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-100410962023-03-28 A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments Davtian, Nina Bard, Edouard Proc Natl Acad Sci U S A Physical Sciences The last glacial cycle provides the opportunity to investigate large changes in the Atlantic Meridional Overturning Circulation (AMOC) beyond the small fluctuations evidenced from direct measurements. Paleotemperature records from Greenland and the North Atlantic show an abrupt variability, called Dansgaard–Oeschger (DO) events, which is associated with abrupt changes of the AMOC. These DO events also have Southern Hemisphere counterparts via the thermal bipolar seesaw, a concept describing the meridional heat transport leading to asynchronous temperature changes between both hemispheres. However, temperature records from the North Atlantic show more pronounced DO cooling events during massive releases of icebergs known as Heinrich (H) events, contrary to ice-core–based temperature records from Greenland. Here, we present high-resolution temperature records from the Iberian Margin and a Bipolar Seesaw Index to discriminate DO cooling events with and without H events. We show that the thermal bipolar seesaw model generates synthetic Southern Hemisphere temperature records that best resemble Antarctic temperature records when using temperature records from the Iberian Margin as inputs. Our data-model comparison emphasizes the role of the thermal bipolar seesaw in the abrupt temperature variability of both hemispheres with a clear enhancement during DO cooling events with H events, implying a relationship that is more complex than a simple flip-flop between two climate states linked to a tipping point threshold. National Academy of Sciences 2023-03-13 2023-03-21 /pmc/articles/PMC10041096/ /pubmed/36913575 http://dx.doi.org/10.1073/pnas.2209558120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Davtian, Nina
Bard, Edouard
A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title_full A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title_fullStr A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title_full_unstemmed A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title_short A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments
title_sort new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from iberian margin sediments
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041096/
https://www.ncbi.nlm.nih.gov/pubmed/36913575
http://dx.doi.org/10.1073/pnas.2209558120
work_keys_str_mv AT davtiannina anewviewonabruptclimatechangesandthebipolarseesawbasedonpaleotemperaturesfromiberianmarginsediments
AT bardedouard anewviewonabruptclimatechangesandthebipolarseesawbasedonpaleotemperaturesfromiberianmarginsediments
AT davtiannina newviewonabruptclimatechangesandthebipolarseesawbasedonpaleotemperaturesfromiberianmarginsediments
AT bardedouard newviewonabruptclimatechangesandthebipolarseesawbasedonpaleotemperaturesfromiberianmarginsediments