Cargando…

Optical dipole-induced anisotropic growth of semiconductors: A facile strategy toward chiral and complex nanostructures

Chiral nanostructures based on semiconductors exhibit pronounced properties of chiral luminescence and optoelectronic responses, which are fundamental for chiroptoelectronic devices. However, the state-of-the-art techniques of generating semiconductors with chiral configurations are poorly developed...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiaolin, Wang, Xujie, Liu, Yong, Ding, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041118/
https://www.ncbi.nlm.nih.gov/pubmed/36913587
http://dx.doi.org/10.1073/pnas.2216627120
Descripción
Sumario:Chiral nanostructures based on semiconductors exhibit pronounced properties of chiral luminescence and optoelectronic responses, which are fundamental for chiroptoelectronic devices. However, the state-of-the-art techniques of generating semiconductors with chiral configurations are poorly developed, most of which are complicated or of low yield, rendering low compatibility to the platform of optoelectronic devices. Here we show polarization-directed oriented growth of platinum oxide/sulfide nanoparticles based on optical dipole interactions and near-field–enhanced photochemical deposition. By rotating the polarization during the irradiation or employing vector beam, both three dimensional and planar chiral nanostructures can be obtained, which is extendable to cadmium sulfide. These chiral superstructures exhibit broadband optical activity with a g-factor of ~0.2 and a luminescence g-factor of ~0.5 in the visible, making them promising candidate for chiroptoelectronic devices.