Cargando…
MOFormer: Self-Supervised Transformer Model for Metal–Organic Framework Property Prediction
[Image: see text] Metal–organic frameworks (MOFs) are materials with a high degree of porosity that can be used for many applications. However, the chemical space of MOFs is enormous due to the large variety of possible combinations of building blocks and topology. Discovering the optimal MOFs for s...
Autores principales: | Cao, Zhonglin, Magar, Rishikesh, Wang, Yuyang, Barati Farimani, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041520/ https://www.ncbi.nlm.nih.gov/pubmed/36706365 http://dx.doi.org/10.1021/jacs.2c11420 |
Ejemplares similares
-
Potential neutralizing antibodies discovered for novel corona virus using machine learning
por: Magar, Rishikesh, et al.
Publicado: (2021) -
Forecasting COVID-19 new cases using deep learning methods
por: Xu, Lu, et al.
Publicado: (2022) -
Understanding mutation hotspots for the SARS-CoV-2 spike protein using Shannon Entropy and K-means clustering
por: Mullick, Baishali, et al.
Publicado: (2021) -
Prediction of GPCR activity using machine learning
por: Yadav, Prakarsh, et al.
Publicado: (2022) -
Isolating Specific vs. Non-Specific Binding Responses in Conducting Polymer Biosensors for Bio-Fingerprinting
por: Smith, Phil M., et al.
Publicado: (2021)